Your browser doesn't support javascript.
A Nonrandomized Trial of the Effects of Passive Simulated Jogging on Short-Term Heart Rate Variability in Type 2 Diabetic Subjects.
Adams, Jose A; Lopez, Jose R; Banderas, Veronica; Sackner, Marvin A.
  • Adams JA; Division Neonatology, Mount Sinai Medical Center of Greater Miami, Miami Beach, Florida, USA.
  • Lopez JR; Mount Sinai Medical Center of Greater Miami, Miami Beach, Florida, USA.
  • Banderas V; Sackner Wellness Products LLC, Miami, Florida, USA.
  • Sackner MA; Mount Sinai Medical Center of Greater Miami, Miami Beach, Florida, USA.
J Diabetes Res ; 2023: 4454396, 2023.
Article in English | MEDLINE | ID: covidwho-2290587
ABSTRACT

Background:

Diabetes mellitus has reached global epidemic proportions, with type 2 diabetes (T2DM) comprising more than 90% of all subjects with diabetes. Cardiovascular autonomic neuropathy (CAN) frequently occurs in T2DM. Heart rate variability (HRV) reflects a neural balance between the sympathetic and parasympathetic autonomic nervous systems (ANS) and a marker of CAN. Reduced HRV has been shown in T2DM and improved by physical activity and exercise. External addition of pulses to the circulation, as accomplished by a passive simulated jogging device (JD), restores HRV in nondiseased sedentary subjects after a single session. We hypothesized that application of JD for a longer period (7 days) might improve HRV in T2DM participants.

Methods:

We performed a nonrandomized study on ten T2DM subjects (age range 44-73 yrs) who were recruited and asked to use a physical activity intervention, a passive simulated jogging device (JD) for 7 days. JD moves the feet in a repetitive and alternating manner; the upward movement of the pedal is followed by a downward movement of the forefoot tapping against a semirigid bumper to simulate the tapping of feet against the ground during jogging. Heart rate variability (HRV) analysis was performed using an electrocardiogram in each subject in seated posture on day 1 (baseline, BL), after seven days of JD (JD7), and seven days after discontinuation of JD (Post-JD). Time domain variables were computed, viz., standard deviation of all normal RR intervals (SDNN), standard deviation of the delta of all RR intervals (SDΔNN), and the square root of the mean of the sum of the squares of differences between adjacent RR intervals (RMSSD). Frequency domain measures were determined using a standard Fast Fourier spectral analysis, as well as the parameters of the Poincaré plots (SD1 and SD2).

Results:

Seven days of JD significantly increased SDNN, SDΔNN, RMSSD, and both SD1 and SD2 from baseline values. The latter parameters remained increased Post-JD. JD did not modify the frequency domain measures of HRV.

Conclusion:

A passive simulated jogging device increased the time domain and Poincaré variables of HRV in T2DM. This intervention provided effortless physical activity as a novel method to harness the beneficial effects of passive physical activity for improving HRV in T2DM subjects.
Subject(s)

Full text: Available Collection: International databases Database: MEDLINE Main subject: Diabetes Mellitus, Type 2 Type of study: Experimental Studies / Observational study / Randomized controlled trials Limits: Humans / Infant Language: English Journal: J Diabetes Res Year: 2023 Document Type: Article Affiliation country: 2023

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Diabetes Mellitus, Type 2 Type of study: Experimental Studies / Observational study / Randomized controlled trials Limits: Humans / Infant Language: English Journal: J Diabetes Res Year: 2023 Document Type: Article Affiliation country: 2023