Your browser doesn't support javascript.
Droplet digital recombinase polymerase amplification for multiplexed detection of human coronavirus.
Choi, Ji Wook; Seo, Won Ho; Kang, Taejoon; Kang, Taewook; Chung, Bong Geun.
  • Choi JW; Department of Mechanical Engineering, Sogang University, Seoul, Korea. bchung@sogang.ac.kr.
  • Seo WH; Department of Biomedical Engineering, Sogang University, Seoul, Korea.
  • Kang T; Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.
  • Kang T; School of Pharmacy, Sungkyunkwan University (SKKU), Suwon, Korea.
  • Chung BG; Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Korea.
Lab Chip ; 23(10): 2389-2398, 2023 05 16.
Article in English | MEDLINE | ID: covidwho-2293429
ABSTRACT
Since the outbreak of coronavirus 2019 (COVID-19), detection technologies have been attracting a great deal of attention in molecular diagnosis applications. In particular, the droplet digital PCR (ddPCR) has become a promising tool as it offers absolute quantification of target nucleic acids with high specificity and sensitivity. In recent years, the combination of the isothermal amplification strategies has made ddPCR a popular method for on-site testing by enabling amplification at a constant temperature. However, the current isothermal ddPCR assays are still challenging due to inherent non-specific amplification. In this paper, we present a multiplexed droplet digital recombinase polymerase amplification (MddRPA) with precise initiation of the reaction. First, the reaction temperature and dynamic range of reverse transcription (RT) and RPA were characterized by real-time monitoring of fluorescence intensities. Using a droplet-based microfluidic chip, the master mix and the initiator were fractionated and rapidly mixed within well-confined droplets. Due to the high heat transfer and mass transfer of the droplets, the precise initiation of the amplification was enabled and the entire assay could be conducted within 30 min. The concentrations of target RNA in the range from 5 copies per µL to 2500 copies per µL could be detected with high linearity (R2 > 0.999). Furthermore, the multiplexed detection of three types of human coronaviruses was successfully demonstrated with high specificity (>96%). Finally, we compared the performance of the assay with a commercial RT-qPCR system using COVID-19 clinical samples. The MddRPA assay showed a 100% concordance with the RT-qPCR results, indicating its reliability and accuracy in detecting SARS-CoV-2 nucleic acids in clinical samples. Therefore, our MddRPA assay with rapid detection, precise quantification, and multiplexing capability would be an interesting method for molecular diagnosis of viral infections.
Subject(s)

Full text: Available Collection: International databases Database: MEDLINE Main subject: Recombinases / COVID-19 Type of study: Diagnostic study / Prognostic study Limits: Humans Language: English Journal: Lab Chip Journal subject: Biotechnology / Chemistry Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Recombinases / COVID-19 Type of study: Diagnostic study / Prognostic study Limits: Humans Language: English Journal: Lab Chip Journal subject: Biotechnology / Chemistry Year: 2023 Document Type: Article