Your browser doesn't support javascript.
Rapid viral metagenomics using SMART-9N amplification and nanopore sequencing.
Claro, Ingra M; Ramundo, Mariana S; Coletti, Thais M; da Silva, Camila A M; Valenca, Ian N; Candido, Darlan S; Sales, Flavia C S; Manuli, Erika R; de Jesus, Jaqueline G; de Paula, Anderson; Felix, Alvina Clara; Andrade, Pamela Dos Santos; Pinho, Mariana C; Souza, William M; Amorim, Mariene R; Proenca-Modena, José Luiz; Kallas, Esper G; Levi, José Eduardo; Faria, Nuno Rodrigues; Sabino, Ester C; Loman, Nicholas J; Quick, Joshua.
  • Claro IM; Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil.
  • Ramundo MS; MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, SW7 2AZ, UK.
  • Coletti TM; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil.
  • da Silva CAM; School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
  • Valenca IN; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil.
  • Candido DS; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil.
  • Sales FCS; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil.
  • Manuli ER; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil.
  • de Jesus JG; MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, SW7 2AZ, UK.
  • de Paula A; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil.
  • Felix AC; Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK.
  • Andrade PDS; Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil.
  • Pinho MC; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil.
  • Souza WM; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil.
  • Amorim MR; MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, SW7 2AZ, UK.
  • Proenca-Modena JL; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil.
  • Kallas EG; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil.
  • Levi JE; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil.
  • Faria NR; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil.
  • Sabino EC; Faculdade de Saúde Pública da Universidade de São Paulo, Sao Paulo, 01246-904, Brazil.
  • Loman NJ; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil.
  • Quick J; World Reference Center for Emerging Viruses and Arboviruses and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
Wellcome Open Res ; 6: 241, 2021.
Article in English | MEDLINE | ID: covidwho-2293550
ABSTRACT
Emerging and re-emerging viruses are a global health concern. Genome sequencing as an approach for monitoring circulating viruses is currently hampered by complex and expensive methods. Untargeted, metagenomic nanopore sequencing can provide genomic information to identify pathogens, prepare for or even prevent outbreaks. SMART (Switching Mechanism at the 5' end of RNA Template) is a popular approach for RNA-Seq but most current methods rely on oligo-dT priming to target polyadenylated mRNA molecules. We have developed two random primed SMART-Seq approaches, a sequencing agnostic approach 'SMART-9N' and a version compatible rapid adapters  available from Oxford Nanopore Technologies 'Rapid SMART-9N'. The methods were developed using viral isolates, clinical samples, and compared to a gold-standard amplicon-based method. From a Zika virus isolate the SMART-9N approach recovered 10kb of the 10.8kb RNA genome in a single nanopore read. We also obtained full genome coverage at a high depth coverage using the Rapid SMART-9N, which takes only 10 minutes and costs up to 45% less than other methods. We found the limits of detection of these methods to be 6 focus forming units (FFU)/mL with 99.02% and 87.58% genome coverage for SMART-9N and Rapid SMART-9N respectively. Yellow fever virus plasma samples and SARS-CoV-2 nasopharyngeal samples previously confirmed by RT-qPCR with a broad range of Ct-values were selected for validation. Both methods produced greater genome coverage when compared to the multiplex PCR approach and we obtained the longest single read of this study (18.5 kb) with a SARS-CoV-2 clinical sample, 60% of the virus genome using the Rapid SMART-9N method. This work demonstrates that SMART-9N and Rapid SMART-9N are sensitive, low input, and long-read compatible alternatives for RNA virus detection and genome sequencing and Rapid SMART-9N improves the cost, time, and complexity of laboratory work.
Keywords

Full text: Available Collection: International databases Database: MEDLINE Type of study: Diagnostic study / Prognostic study / Randomized controlled trials Language: English Journal: Wellcome Open Res Year: 2021 Document Type: Article Affiliation country: Wellcomeopenres.17170.2

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Type of study: Diagnostic study / Prognostic study / Randomized controlled trials Language: English Journal: Wellcome Open Res Year: 2021 Document Type: Article Affiliation country: Wellcomeopenres.17170.2