Your browser doesn't support javascript.
Surveillance Rover to Maintain Social Distancing in Crowded Areas
2nd International Conference on Electronics and Renewable Systems, ICEARS 2023 ; : 1622-1626, 2023.
Article in English | Scopus | ID: covidwho-2294235
ABSTRACT
COVID-19 is making a huge impact both in terms of the economy and human lives. Many lost their lives due to COVID-19 which is found in most of the nations. The number of positive symptoms is increasing rapidly all over the world. To safeguard us from the virus, some protocols have been addressed by WHO in which people has to wear a mask and make a social distancing when moved in public. Therefore, social distancing places an important role in preventing us from the spread of the diseases. The minimum distance between to be maintained is informed at 6 feet informed by the health organizations. When people gathered on a group social distancing could not be maintained even if manual or any kind of technology implemented. Temperature measurement on mass gathering was also a tedious process where the monitoring is essential. Multiple methods such as thermal cameras, temperature sensors for monitoring the personnel has not been efficient. In the proposed work to monitor the social distancing between the persons an ultrasonic sensor is placed to detect the obstacle and an IR sensor to make the rover move. An encoder is used to calculate the distance based on the rpm of the wheel. Based on this input the distance is checked within this limit the obstacle is detected, an alert signal is made using the buzzer. A thermal sensor is used to measure the temperature of the person and an LCD display shows the temperature of the person and distance between obstacles. The proposed system has resulted in identifying the distance and helps in reducing the spread during the pandemic situation. © 2023 IEEE.
Keywords

Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: 2nd International Conference on Electronics and Renewable Systems, ICEARS 2023 Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: 2nd International Conference on Electronics and Renewable Systems, ICEARS 2023 Year: 2023 Document Type: Article