Your browser doesn't support javascript.
Effect of Replacing Feldspar by Philippine Black Cinder on the Development of Low-Porosity Red Stoneware
Minerals ; 13(4):505, 2023.
Article in English | ProQuest Central | ID: covidwho-2294950
ABSTRACT
Stoneware is a ceramic material with low porosity and high mechanical properties, such as the modulus of rupture. It is essentially made of clay, feldspar and quartz and is sintered to create a mixture of glass and crystalline phases. With the projected growth rate of the global ceramics market size and the country's development plan for 2023–2028, it is imperative that alternative raw materials for the manufacture of ceramic products be sourced so that the importation of these materials, such as feldspar, be minimized, if not eliminated. Cinder in the Philippines is mainly used as a filling material in pavements and residential areas. In this study, this resource is utilized as partial and full replacement of feldspar in a typical ternary diagram for stoneware production. Bars were formed from different formulations by the slip casting method and were sintered at 1200 °C. Physical and mechanical properties of the bars, such as shrinkage, loss on ignition, water absorption, apparent porosity and modulus of rupture were determined. Thermo-physical analyses were also carried out on the raw materials and on formulated powders. Meeting the requirements of the various quality standards for ceramics, the partial replacement of feldspar with black cinder (LF, LFBQ and LFBH) is feasible for wall and roof applications while full replacement of feldspar with black cinder (LB) is suitable for wider use as wall, floor, vitrified, industrial and roof tiles.
Keywords

Full text: Available Collection: Databases of international organizations Database: ProQuest Central Type of study: Experimental Studies Language: English Journal: Minerals Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: ProQuest Central Type of study: Experimental Studies Language: English Journal: Minerals Year: 2023 Document Type: Article