Your browser doesn't support javascript.
Student Attention Base Facial Emotion State Recognition Using Convolutional Neural Network
Lecture Notes in Networks and Systems ; 551:579-589, 2023.
Article in English | Scopus | ID: covidwho-2296254
ABSTRACT
E-learning system advancements give students new opportunities to better their academic performance and access e-learning education. Because it provides benefits over traditional learning, e-learning is becoming more popular. The coronavirus disease pandemic situation has caused educational institution cancelations all across the world. Around all over the world, more than a billion students are not attending educational institutions. As a result, learning criteria have taken on significant growth in e-learning, such as online and digital platform-based instruction. This study focuses on this issue and provides learners with a facial emotion recognition model. The CNN model is trained to assess images and detect facial expressions. This research is working on an approach that can see real-time facial emotions by demonstrating students' expressions. The phases of our technique are face detection using Haar cascades and emotion identification using CNN with classification on the FER 2013 datasets with seven different emotions. This research is showing real-time facial expression recognition and help teachers adapt their presentations to their student's emotional state. As a result, this research detects that emotions' mood achieves 62% accuracy, higher than the state-of-the-art accuracy while requiring less processing. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
Keywords

Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: Lecture Notes in Networks and Systems Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: Lecture Notes in Networks and Systems Year: 2023 Document Type: Article