Your browser doesn't support javascript.
Resilient supply chain network design without lagging sustainability responsibilities
Applied Soft Computing ; 140, 2023.
Article in English | Scopus | ID: covidwho-2300249
ABSTRACT
In the 21st century, global supply chains have experienced severe risks due to disruptions caused by crises and serious diseases, such as the great tsunami, SARS, and, more recently, COVID-19. Building a resilient supply chain is necessary for business survival and growth. Similarly, there is increasing regulatory and social pressure for managers to continuously design and implement sustainable supply chain networks, encompassing economic, social, and environmental components. Hence, a panacea approach is required to establish a compromise position between resiliency concerns and sustainability responsibilities. To address this, this work presents a hybrid integrated BWM-CoCoSo-multi-objective programming model (BC-MOPM) formulated to deliver a compromise between resilience and sustainability supply chain network design (RS-SCND). First, a thorough literature review analysis is conducted to explore the relationship and correlation between resilience and sustainability to develop a framework for the resiliency and sustainability criteria, in a supply chain context. Second, four objectives were formulated, including the minimisation of total cost and environmental impact and the maximisation of social and resilience paradigms. A real two-tier supply chain network is deployed to evaluate the applicability of the developed BC-MOPM. Furthermore, sensitivity analysis is conducted to establish the relative importance of the identified criteria to prove the model's robustness. Results demonstrate the capability of the BC-MOPM in revealing trade-offs between the resiliency and sustainability aspects. © 2023 Elsevier B.V.
Keywords

Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: Applied Soft Computing Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: Applied Soft Computing Year: 2023 Document Type: Article