Your browser doesn't support javascript.
A CTS Team Approach to Topological Data Analysis of Electronic Health Records for Subtyping and Clinical Outcomes Prediction in Patients with COVID-19
Journal of Clinical and Translational Science ; 7(s1):1, 2023.
Article in English | ProQuest Central | ID: covidwho-2303911
ABSTRACT
OBJECTIVES/GOALS Analysis and modeling of large, complex clinical data remain challenging despite modern advances in biomedical informatics. We aim to explore the potential of topological data analysis (TDA) to address such challenges in the context of COVID-19 outcomes using electronic health records (EHRs). METHODS/STUDY POPULATION In this work, we develop TDA approaches to characterize subtypes and predict outcomes in patients with COVID-19 infection. First, data for >70,000 COVID-19 patients were extracted from the OneFlorida EHR database. Next, enhancements to the TDA algorithm Mapper were designed and implemented to adapt the technique to this type of data. Clinical variables, including patient demographics, vital signs, and lab values, were then used as input to conduct a population-level exploratory analysis with an emphasis on identifying phenotypic subtypes at increased risk of adverse outcomes such as major adverse cardiovascular events (MACE), mechanical ventilation, and death. RESULTS/ANTICIPATED

RESULTS:

Preliminary Mapper experiments have produced visual representations of the COVID-19 patient population that are well-suited to exploratory analysis. Such visualizations facilitate easy identification of phenotypic subnetworks that differ from the general population in terms of baseline variables or clinical outcomes. In this and subsequent work, we aim to fully characterize and quantify differences between these subnetworks to identify factors that may confer increased risk (or protection from) adverse outcomes. We also plan to validate and rigorously compare the efficacy of this TDA-based approach to common alternatives such as clustering, principal component analysis, and machine learning. DISCUSSION/

SIGNIFICANCE:

This work demonstrates the potential utility of TDA for the characterization of complex biomedical data. Mapper provides a novel means of exploring EHR data, which are otherwise difficult to visualize and can aid in identifying or characterizing patient subtypes in diseases such as COVID-19.
Keywords

Full text: Available Collection: Databases of international organizations Database: ProQuest Central Type of study: Prognostic study Language: English Journal: Journal of Clinical and Translational Science Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: ProQuest Central Type of study: Prognostic study Language: English Journal: Journal of Clinical and Translational Science Year: 2023 Document Type: Article