Your browser doesn't support javascript.
DeepLungNet: An Effective DL-Based Approach for Lung Disease Classification Using CRIs
Electronics ; 12(8):1860, 2023.
Article in English | ProQuest Central | ID: covidwho-2305024
ABSTRACT
Infectious disease-related illness has always posed a concern on a global scale. Each year, pneumonia (viral and bacterial pneumonia), tuberculosis (TB), COVID-19, and lung opacity (LO) cause millions of deaths because they all affect the lungs. Early detection and diagnosis can help create chances for better care in all circumstances. Numerous tests, including molecular tests (RT-PCR), complete blood count (CBC) tests, Monteux tuberculin skin tests (TST), and ultrasounds, are used to detect and classify these diseases. However, these tests take a lot of time, have a 20% mistake rate, and are 80% sensitive. So, with the aid of a doctor, radiographic tests such as computed tomography (CT) and chest radiograph images (CRIs) are used to detect lung disorders. With CRIs or CT-scan images, there is a danger that the features of various lung diseases' diagnoses will overlap. The automation of such a method is necessary to correctly classify diseases using CRIs. The key motivation behind the study was that there is no method for identifying and classifying these (LO, pneumonia, VP, BP, TB, COVID-19) lung diseases. In this paper, the DeepLungNet deep learning (DL) model is proposed, which comprises 20 learnable layers, i.e., 18 convolution (ConV) layers and 2 fully connected (FC) layers. The architecture uses the Leaky ReLU (LReLU) activation function, a fire module, a maximum pooling layer, shortcut connections, a batch normalization (BN) operation, and group convolution layers, making it a novel lung diseases classification framework. This is a useful DL-based method for classifying lung disorders, and we tested the effectiveness of the suggested framework on two datasets with a variety of images from different datasets. We have performed two experiments a five-class classification (TB, pneumonia, COVID-19, LO, and normal) and a six-class classification (VP, BP, COVID-19, normal, TB, and LO). The suggested framework's average accuracy for classifying lung diseases into TB, pneumonia, COVID-19, LO, and normal using CRIs was an impressive 97.47%. We have verified the performance of our framework on a different publicly accessible database of images from the agriculture sector in order to further assess its performance and validate its generalizability. This study offers an efficient and automated method for classifying lung diseases that aids in the early detection of lung disease. This strategy significantly improves patient survival, possible treatments, and limits the transmission of infectious illnesses throughout society.
Keywords

Full text: Available Collection: Databases of international organizations Database: ProQuest Central Type of study: Experimental Studies Language: English Journal: Electronics Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: ProQuest Central Type of study: Experimental Studies Language: English Journal: Electronics Year: 2023 Document Type: Article