Your browser doesn't support javascript.
Enhanced TLR7 immunity drives innate protection against SARS-CoV-2 with chilblains as collateral damage
Journal of Investigative Dermatology ; 143(5 Supplement):S39, 2023.
Article in English | EMBASE | ID: covidwho-2306112
ABSTRACT
Outbreaks of chilblains, a hallmark sign of type I interferonopathies, have been reported during the COVID-19 pandemic. These cases occurred mostly in patients who were asymptomatic and showed negative results from PCR and serology tests for SARS-CoV-2. We hypothesized that chilblain patients are predisposed to mount a robust innate immunity against the virus, which clinically manifests as chilblains and promotes early viral clearance, thereby preventing pulmonary disease and precluding adaptive responses. By profiling skin lesions in the early stage following chilblain onset, we uncover a transient IRF7-dependent type I interferon (IFN) signature that is driven by the acral infiltration of systemically activated plasmacytoid dendritic cells (pDCs). Patients' peripheral blood mononuclear cells (PBMCs) demonstrate increased production of IFNalpha when exposed to SARS-CoV-2 and influenza A, but not herpes simplex virus 1 (HSV-1), indicating a heightened ability to detect RNA -but not DNA- viruses. Further investigations revealed enhanced responsiveness of pDCs in chilblain patients to the RNA sensor TLR7, but not the DNA sensor TLR9. Collectively, our study establishes a two-step model for the immunopathology of SARS-CoV-2-related chilblains enhanced TLR7 immunity in pDCs, likely triggered by SARS-CoV-2 exposure at the mucosal site, leads to prompt viral clearance, which explains the lack of infection markers in most cases. Subsequently, systemic spread of activated pDCs and infiltration of the toes in response to mechanical stress or acral coldness, may result in IFN-mediated tissue damage with development of chilblains.Copyright © 2023
Keywords

Full text: Available Collection: Databases of international organizations Database: EMBASE Language: English Journal: Journal of Investigative Dermatology Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: EMBASE Language: English Journal: Journal of Investigative Dermatology Year: 2023 Document Type: Article