Your browser doesn't support javascript.
Spatiotemporal characteristics and socioeconomic factors of PM2.5 heterogeneity in mainland China during the COVID-19 epidemic.
Jia, Hongjie; Zang, Shuying; Zhang, Lijuan; Yakovleva, Evgenia; Sun, Huajie; Sun, Li.
  • Jia H; Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, 150025, China.
  • Zang S; Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, 150025, China.
  • Zhang L; Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, 150025, China.
  • Yakovleva E; Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar, Komi Republic, 167982, Russian Federation.
  • Sun H; Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, 150025, China. Electronic address: 41454532@qq.com.
  • Sun L; Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, 150025, China. Electronic addr
Chemosphere ; 331: 138785, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2309089
ABSTRACT
Spatiotemporal variation of PM2.5 in 2018 and 2020 were compared to analyze the impacts of COVID-19, the spatial heterogeneity of PM2.5, and meteorological and socioeconomic impacts of PM2.5 concentrations heterogeneity in China in 2020 were investigated. The results showed that the annual average PM2.5 concentration in 2020 was 32.73 µg/m3 existing a U-shaped variation pattern, which has decreased by 6.38 µg/m3 compared to 2018. A consistent temporal pattern was found in 2018 and 2020 with significant high values in winter and low in summer. PM2.5 declined dramatically in eastern and central China, where are densely populated and economically developed areas during the COVID-19 epidemic compared with previous years, indicating that the significantly decline of social activities had an important effect on the reduction of PM2.5 concentrations. The lowest PM2.5 was found in August because that precipitation had a certain dilution effect on pollutants. January was the most polluted due to centralized coal burning for heating in North China. Overall, the PM2.5 concentrations in China were spatially agglomerated. The highly polluted contiguous zones were mainly located in northwest China and the central plains city group, while the coastal area and Inner Mongolia were areas with good air quality. Negative correlations were found between natural factors (temperature, precipitation, wind speed and relative humidity) and PM2.5 concentrations, with precipitation has the greatest impact on PM2.5, which are beneficial for reducing PM2.5 concentrations. Among the socio-economic factors, proportion of the secondary industry, number of taxis, per capita GDP, population, and industrial nitrogen oxide emissions have positive correlation effects on PM2.5, while the overall social electricity consumption, industrial sulfur dioxide emissions, green coverage in built-up areas, and total gas and liquefied gas supply have negative correlation effects on the PM2.5.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Air Pollutants / Air Pollution / COVID-19 Type of study: Observational study Limits: Humans Country/Region as subject: Asia Language: English Journal: Chemosphere Year: 2023 Document Type: Article Affiliation country: J.chemosphere.2023.138785

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Air Pollutants / Air Pollution / COVID-19 Type of study: Observational study Limits: Humans Country/Region as subject: Asia Language: English Journal: Chemosphere Year: 2023 Document Type: Article Affiliation country: J.chemosphere.2023.138785