Your browser doesn't support javascript.
COVID-19: How Effective Are the Repurposed Drugs and Novel Agents in Treating the Infection?
Sudan Journal of Medical Sciences ; 17(4):498-538, 2022.
Article in English | Web of Science | ID: covidwho-2311165
ABSTRACT
Coronavirus disease 2019 (COVID-19) induced by the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has impacted the lives and wellbeing of many people. This globally widespread disease poses a significant public health concern that urges to discover an effective treatment. This review paper discusses the effectiveness of repurposed drugs used to treat COVID-19 and potential novel therapies for COVID-19. Among the various repurposed drugs, remdesivir is the only agent approved by the Food and Drug Administration (FDA) to treat COVID-19. On the other hand, several drugs have been listed in the Emergency Use Authorization (EUA) by the FDA to treat COVID-19, including casirivimab and imdevimab, baricitinib (in combination with remdesivir), bamlanivimab, tocilizumab, and IL-6 inhibitors. In addition, in vitro and clinical studies have suggested cepharanthine, sotrovimab, and XAV-19 as potential treatments to manage COVID-19. Due to inadequate understanding of COVID- 19 and the rapid mutation of SARS-CoV-2, COVID-19 remains a threat to global public health, with vaccination considered the most effective method to decrease COVID-19 transmission currently. Nevertheless, with the intense efforts of clinical researchers globally, more promising treatments for COVID-19 will be established in the future.
Keywords

Full text: Available Collection: Databases of international organizations Database: Web of Science Type of study: Experimental Studies Language: English Journal: Sudan Journal of Medical Sciences Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Web of Science Type of study: Experimental Studies Language: English Journal: Sudan Journal of Medical Sciences Year: 2022 Document Type: Article