Your browser doesn't support javascript.
Change time estimation uncertainty in nonlinear dynamical systems with applications to COVID‐19
International Journal of Robust & Nonlinear Control ; 33(9):4732-4760, 2023.
Article in English | Academic Search Complete | ID: covidwho-2312395
ABSTRACT
The impact that each individual non‐pharmaceutical intervention (NPI) had on the spread rate of COVID‐19 is difficult to estimate, since several NPIs were implemented in rapid succession in most countries. In this article, we analyze the detectability of sudden changes in a parameter of nonlinear dynamical systems, which could be used to represent NPIs or mutations of the virus, in the presence of measurement noise. Specifically, by taking an agnostic approach, we provide necessary conditions for when the best possible unbiased estimator is able to isolate the effect of a sudden change in a model parameter, by using the Hammersley–Chapman–Robbins (HCR) lower bound. Several simplifications to the calculation of the HCR lower bound are given, which depend on the amplitude of the sudden change and the dynamics of the system. We further define the concept of the most informative sample based on the largest ℓ2 distance between two output trajectories, which is a good indicator of when the HCR lower bound converges. These results are thereafter used to analyze the susceptible‐infected‐removed model. For instance, we show that performing analysis using the number of recovered/deceased, as opposed to the cumulative number of infected, may be an inferior signal to use since sudden changes are fundamentally more difficult to estimate and seem to require more samples. Finally, these results are verified by simulations and applied to real data from the spread of COVID‐19 in France. [ FROM AUTHOR] Copyright of International Journal of Robust & Nonlinear Control is the property of John Wiley & Sons, Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)
Keywords

Full text: Available Collection: Databases of international organizations Database: Academic Search Complete Language: English Journal: International Journal of Robust & Nonlinear Control Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Academic Search Complete Language: English Journal: International Journal of Robust & Nonlinear Control Year: 2023 Document Type: Article