Your browser doesn't support javascript.
CD8+ T CELL CLONES FROM PRIOR SARS-CoV-2 INFECTION PREDOMINATE AFTER mRNA VACCINATION
Topics in Antiviral Medicine ; 31(2):142-143, 2023.
Article in English | EMBASE | ID: covidwho-2314582
ABSTRACT

Background:

Hybrid immunity is more protective than vaccination or prior infection alone. To understand the formation of hybrid immunity, we studied how SARS-CoV-2 mRNA vaccines interact with T cell memory by tracking spike (S) specific T cells in cohorts of hospitalized (n = 19) or non-hospitalized (n = 34) COVID-19 convalescents. We hypothesized that S-reactive CD4 and CD8 T cells would increase in response to serial vaccine doses and reflect prior immune exposure at the clonal level. Method(s) After vaccination, we stimulated PBMCs from 12 participants (8M/4F) with peptides spanning S. Activated cells (CD69+CD137+) were sorted and CD4/CD8 phenotype linked with paired TRB-TRA sequences at single cell resolution. S-reactive TRB sequences were mapped within 4-6 serial blood and post-booster nasal TRB repertoires to evaluate S-reactive CD4 and CD8 T cell clonotypic kinetics spanning convalescence to boost. PBMCs from 53 participants were sequenced with the ImmunoSEQ assay to evaluate S-reactive TRB breadth using a database of S-assigned TRB sequences (Adaptive Biotechnologies), comparing S-reactive TRB diagnostic breadth by hospitalization status (Wilcoxon test). Result(s) SARS-CoV-2 mRNA vaccination provoked strong T cell clonal expansion in most participants. At 8-12 months after infection, each primary mRNA dose increased the abundance and diversity of S-specific T cells. Clonal and integrated expansions were larger in CD8 than in CD4 T cells. At the convalescent time point, we observed greater diagnostic S-reactive CD4 T cell breadth in hospitalized vs. non-hospitalized patients (p< 0.01). CD4 T cell S breadth was again higher in previously hospitalized persons after the 2nd primary (p=0.02) and booster (p< 0.01) doses, suggesting that diverse CD4 T cell memory after severe infection leads to increased repertoire diversity after vaccination. S-specific T cells with identical TCRs were detectable in blood and the nasal mucosa, with specificity confirmed using a TRA/TRB transgenic T cell with the matching receptor. Conclusion(s) Although both S-specific CD8 and CD4 T cell memory are established by prior infection, S-specific CD8 T cells predominated in blood after primary vaccination, with some clonotypes showing up to 1000-fold expansion across 1-2 mRNA doses. Vaccine-reactive CD8 clonotypes were present at the barrier nasal site after booster mRNA dosing. Severe disease imprinted a highly diverse S-reactive CD4 repertoire persisting through vaccination.
Keywords
Search on Google
Collection: Databases of international organizations Database: EMBASE Topics: Vaccines Language: English Journal: Topics in Antiviral Medicine Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS

Search on Google
Collection: Databases of international organizations Database: EMBASE Topics: Vaccines Language: English Journal: Topics in Antiviral Medicine Year: 2023 Document Type: Article