Your browser doesn't support javascript.
Marine drugs as putative inhibitors against non-structural proteins of SARS-CoV-2: an in silico study.
Patel, Simran; Hasan, Haydara; Umraliya, Divyesh; Sanapalli, Bharat Kumar Reddy; Yele, Vidyasrilekha.
  • Patel S; Faculty of Pharmacy, Marwadi University, Rajkot, Gujarat, 360003, India.
  • Hasan H; Faculty of Pharmacy, Marwadi University, Rajkot, Gujarat, 360003, India.
  • Umraliya D; Faculty of Pharmacy, Marwadi University, Rajkot, Gujarat, 360003, India.
  • Sanapalli BKR; Department of Pharmacology, Faculty of Pharmacy, Marwadi University, Rajkot, Gujarat, 360003, India. bharathsanapalli@yahoo.in.
  • Yele V; Department of Pharmacology, School of Pharmaceutical Sciences, MB University, Tirupati, Andhra Pradesh, 517102, India. bharathsanapalli@yahoo.in.
J Mol Model ; 29(6): 176, 2023 May 12.
Article in English | MEDLINE | ID: covidwho-2318045
ABSTRACT

INTRODUCTION:

Coronavirus disease 2019 (COVID-19) is an unprecedented pandemic, threatening human health worldwide. The need to produce novel small-molecule inhibitors against the ongoing pandemic has resulted in the use of drugs such as chloroquine, azithromycin, dexamethasone, favipiravir, ribavirin, remdesivir and azithromycin. Moreover, the reports of the clinical trials of these drugs proved to produce detrimental effects on patients with side effects like nephrotoxicity, retinopathy, cardiotoxicity and cardiomyopathy. Recognizing the need for effective and non-harmful therapeutic candidates to combat COVID-19, we aimed to develop promising drugs against SARS-COV-2.

DISCUSSION:

In the current investigation, high-throughput virtual screening was performed using the Comprehensive Marine Natural Products Database against five non-structural proteins Nsp3, Nsp5, Nsp12, Nsp13 and Nsp15. Furthermore, standard precision (SP) docking, extra precision (XP) docking, binding free energy calculation and absorption, distribution, metabolism, excretion and toxicity studies were performed using the SchrÓ§dinger suite. The top-ranked 5 hits obtained by computational studies exhibited to possess a greater binding affinity with the selected non-structural proteins. Amongst the five hits, CMNPD5804, CMNPD20924 and CMNPD1598 hits were utilized to design a novel molecule (D) that has the capability of interacting with all the key residues in the pocket of the selected non-structural proteins. Furthermore, 200 ns of molecular dynamics simulation studies provided insight into the binding modes of D within the catalytic pocket of selected proteins.

CONCLUSION:

Hence, it is concluded that compound D could be a promising inhibitor against these non-structural proteins. Nevertheless, there is still a need to conduct in vitro and in vivo studies to support our findings.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Biological Products / COVID-19 Type of study: Prognostic study Limits: Humans Language: English Journal: J Mol Model Journal subject: Molecular Biology Year: 2023 Document Type: Article Affiliation country: S00894-023-05574-9

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Biological Products / COVID-19 Type of study: Prognostic study Limits: Humans Language: English Journal: J Mol Model Journal subject: Molecular Biology Year: 2023 Document Type: Article Affiliation country: S00894-023-05574-9