Your browser doesn't support javascript.
SARS-CoV-2 BA.5 CAUSES HIGHER REPLICATION AND LETHAL INFECTION IN K18-hACE2 MICE
Topics in Antiviral Medicine ; 31(2):110-111, 2023.
Article in English | EMBASE | ID: covidwho-2319670
ABSTRACT

Background:

The continuous evolution of SARS-CoV-2 in the diverse immune landscape (natural, vaccine, hybrid) is giving rise to novel immune escape mutations. So far, the resulting new variants (BA.1, BA.2, BA.2.12.1) were observed to cause mild infections, however, BA.5 infections are associated with an increased risk of hospitalization.1 Therefore it is essential to investigate the pathogenesis of BA.5. Method(s) Here we compared the pathogenicity of Pre-Omicron (B.1.351) and Omicron (BA.1, BA.2.12.1, and BA.5) variants in wild-type C57BL/6J mice and K18-hACE2 mice. The virus replication kinetics was also studied in human Calu3, pulmonary alveolar type 2 (AT2) cells, and airway organoids (HAO). Cell-to-cell spread of virus was measured by syncytia formation assay and immunohistochemistry (IHC) of infected lungs. Result(s) In the results, infection in C57BL/6J mice showed severe weight loss ( >15%) for B.1.351 infected mice and moderate ( >5%) for BA.5 infected. C57BL/6J mice showed higher virus replication of B.1.351 followed by BA.5, BA.1, and BA.2.12.1. At the peak of virus replication (2 days) plaque-forming units from lung extract of BA.5 infected mice were two, and three logs higher compared to BA.1 and BA.2.12.1 respectively. BA.5 infection was lethal to 80% of infected K18-hACE2 mice, whereas the mice looked normal after infection with BA.1 and BA.2.12.1. BA.5 infected mice showed high virus replication in brain tissue. Surprisingly the syncytia formation assay and IHC for BA.5 was comparable to that of B.1.351, indicating the higher cell-to-cell spread of BA.5 and B.1.351 compared to BA.1 and BA.2.12.1, which is one of the measures of pathogenicity. Calu3 and HAO showed the same trend of virus replication as was observed in-vivo experiments however AT2 cells were found to be resistant to BA.5 replication. Conclusion(s) These results suggest that the BA.5 variant (lineage) of Omicron has the potential to regain the pathogenicity as it shows increased virulence compared to other Omicron sub-variants. Lethal infection of BA.5 in K18-hACE2 mice may be attributed to catastrophic encephalitis and increased cell-to-cell spread.
Keywords
Search on Google
Collection: Databases of international organizations Database: EMBASE Language: English Journal: Topics in Antiviral Medicine Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS

Search on Google
Collection: Databases of international organizations Database: EMBASE Language: English Journal: Topics in Antiviral Medicine Year: 2023 Document Type: Article