Your browser doesn't support javascript.
MECHANISM AND RESISTANCE STUDIES OF SARS-CoV-2 MPRO INHIBITOR POMOTRELVIR (PBI-0451)
Topics in Antiviral Medicine ; 31(2):216, 2023.
Article in English | EMBASE | ID: covidwho-2319925
ABSTRACT

Background:

The unprecedented scale of the COVID-19 pandemic and rapid evolution of SARS-CoV-2 variants underscores the need for broadly active inhibitors with a high barrier to resistance. The coronavirus main protease (Mpro) is an essential viral enzyme required for viral polyprotein processing and is highly conserved across human coronaviruses. Pomotrelvir (PBI-0451) is a novel Mpro inhibitor currently completing phase 2 clinical trial. Here we describe the mechanism of action, broad activity against SARS-CoV-2 clinical isolates, combination studies with other SARS-CoV-2 inhibitors and favorable resistance profile of pomotrelvir. Method(s) The kinetic parameters of pomotrelvir Mpro inhibition and its interaction with nirmaltrevir were determined in a kinetic protease assay. The IC50s of pomotrelvir on mutant Mpro proteins were measured in an endpoint Mpro assay. Combination studies of pomotrelvir with remdesivir and molnupiravir were carried out in A549-hACE2 cells infected with SARS-CoV-2 NLuc virus. Activity against SARS-CoV-2 clinical variants was assessed by infection of A549-ACE2-TMPRSS2 cells followed by immunostaining of the viral nucleocapsid protein. Result(s) Pomotrelvir is a potent competitive inhibitor of SARS-CoV-2 Mpro (Ki =2.7 nM). Binding of pomotrelvir and the Mpro inhibitor nirmatrelvir to the active site is mutually exclusive. In the SARS-CoV-2 NLuc assay, pomotrelvir is additive when combined with remdesivir or molnupiravir, two nucleoside analogs targeting viral RNA synthesis. When the effect of Mpro substitutions previously selected in a resistance study of pomotrelvir were analyzed in an enzyme assay, only Mpro-N133H showed a significant increase in IC50 (45-fold). The catalytic efficiency of Mpro-N133H is reduced by 10-fold and the recombinant virus SARSCoV-2 (WA1) -N133H is not viable, suggesting that N133H has lower replicative fitness. Lastly, pomotrelvir exhibits broad activity against all SARS-CoV-2 clinical isolates tested to date, including five omicron variants. Conclusion(s) PBI-0451 is a potent competitive inhibitor of SARS-CoV-2 Mpro and is broadly active against SARS-CoV-2 clinical isolates including omicron variants. Results from inhibitor interaction studies support the potential combination of pomotrelvir with remdesivir and molnupiravir but not nirmatrelvir. Enzymatic characterization of in vitro selected pomotrelvir resistant variants indicates they either confer no resistance or have reduced fitness.
Keywords
Search on Google
Collection: Databases of international organizations Database: EMBASE Language: English Journal: Topics in Antiviral Medicine Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS

Search on Google
Collection: Databases of international organizations Database: EMBASE Language: English Journal: Topics in Antiviral Medicine Year: 2023 Document Type: Article