Your browser doesn't support javascript.
Influence of biochar on improving hydrological and nutrient status of two decomposed soils for yield of medicinal plant - Pinellia ternata
Journal of Hydrology and Hydromechanics ; 71(2):156-168, 2023.
Article in English | ProQuest Central | ID: covidwho-2320327
ABSTRACT
The root tuber of Pinellia ternata has been used as a traditional therapeutic herbal medicine. It is reported to impart beneficial attributes in recovering COVID-19 patients. To meet an increasing demand of P. ternata, this study is intended to investigate the effects of biochar on the soil hydrological and agronomic properties of two decomposed soils (i.e., completely decomposed granite (CDG) and lateritic soil) for the growth of P. ternata. The plant was grown in instrumented pots with different biochar application rate (0%, 3% and 5%) for a period of three months. Peanut shell biochar inclusion in both soils resulted in reduction of soil hydraulic conductivity and increase in soil water retention capacity. These alterations in hydrological properties were attributed to measured change in total porosity, biochar intra pore and hydrophilic functional groups. The macro-nutrient (i.e., N, P, K, Ca, and Mg) concentration of both soils increased substantially, while the pH and cation exchange capacity levels in the amended soils were altered to facilitate optimum growth of P. ternata. The tuber biomass in biochar amended CDG at all amendment rate increases by up to 70%. In case of lateritic soil, the tuber biomass increased by 23% at only 5% biochar application rate. All treatments satisfied the minimum succinic acid concentration required as per pharmacopoeia standard index. The lower tuber biomass exhibits a higher succinic acid concentration regardless of the soil type used to grow P. ternata. The biochar improved the yield and quality of P. ternata in both soils.
Keywords

Full text: Available Collection: Databases of international organizations Database: ProQuest Central Language: English Journal: Journal of Hydrology and Hydromechanics Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: ProQuest Central Language: English Journal: Journal of Hydrology and Hydromechanics Year: 2023 Document Type: Article