Your browser doesn't support javascript.
The Role of SARS-CoV Non-structural protein 1 in Regulating RNA stability
Journal of Biological Chemistry ; 299(3 Supplement):S654, 2023.
Article in English | EMBASE | ID: covidwho-2320554
ABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected more than 600 million people across 219 countries during the past three years. SARS-CoV-2 consists of a positive-strand RNA genome that encodes structural and nonstructural proteins and shares a 79% sequence homology with severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1). Nonstructural proteins are necessary for viral replication and suppression of the host cell immune response. Nonstructural protein 1 (nsp1), a small protein conserved among most beta-coronaviruses, inhibits host messenger RNA (mRNA) translation by binding to ribosomal mRNA channels. Nsp1 also triggers degradation of host mRNA while viral RNA remains intact. We have previously shown that nsp1 localizes within stress granules (SGs), non-membranous vesicles of stalled mRNA that form in response to viral infection. We also found that upon induction of stress, SGs disperses within 60- 120 minutes in the presence of nsp1. Since SGs are known to store and protect translationally stalled mRNAs that are target of nsp1, we sought to analyze the level of mRNAs accumulation in SGs in the presence of nsp1. The goal of this project is to identify the impact of nsp1 on stress granule formation during SARS-CoV infection. We used human embryonic kidney cells (HEK293) and transfected them with DNA expressing SARSCoV- 1 nsp1 or a control plasmid. Cells were then incubated at 37degreeC under 5% CO2 concentration for 16 hours. Following incubation, cells were subjected to 30 min of oxidative stress using sodium arenite. Cells were collected and lysed using lysis buffer, then centrifuge at 18 000xg to collect SG pellets used for RNA isolation. Isolated mRNAs were quantified using quantitative RT-PCR. We specifically targeted mRNAs that tend to show a preferential accumulation in SGs without any viral infection. When nsp1 was expressed, we found majority of mRNAs have shown a 2-fold decrease in accumulation in SGs. These results suggest there is a direct effect of nsp1 in dispersing of RNA from SGs. We are currently investigating the effect of viral leader sequence in their accumulation in SGs in the presence of nsp1. This project was supported by the DRP award from SC INBRE (NIGMS, P20GM103499).Copyright © 2023 The American Society for Biochemistry and Molecular Biology, Inc.
Keywords

Full text: Available Collection: Databases of international organizations Database: EMBASE Language: English Journal: Journal of Biological Chemistry Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: EMBASE Language: English Journal: Journal of Biological Chemistry Year: 2023 Document Type: Article