Your browser doesn't support javascript.
Recent advances on CRISPR/Cas system-enabled portable detection devices for on-site agri-food safety assay
Trends in food science & technology. ; 129:Not Available, 2022.
Article in English | EuropePMC | ID: covidwho-2325683
ABSTRACT
Agri-food safety has been considered as one of the most important public concerns worldwide. From farm to table, food crops and foods are extremely vulnerable to the contamination by a variety of pollutants from their growth and processing. Moreover, the SARS-CoV-2 detected in the food supply chain during COVID-19 pandemic has posed a greater challenge for rapid and on-site detection of agri-food contaminants in complex and volatile environments. Therefore, the development of rapid, accurate, and on-site detection technologies and portable detection devices is of great importance to ensure the agri-food security. This review comprehensively summarized the recent advances on the construction of CRISPR/Cas systems-based biosensing technologies and their portable detection devices, as well as their promising applications in the field of agri-food safety. First of all, the classification and working principles of CRISPR/Cas systems were introduced. Then, the latest advances on the CRISPR/Cas system-based on-site detection technologies and portable detection devices were also systematically summarized. Most importantly, the state-of-the-art applications of CRISPR/Cas systems-based on-site detection technologies and portable detection devices in the fields of agri-food safety were comprehensively summarized. Impressively, the future opportunities and challenges in this emerging and promising field were proposed. Emerging CRISPR/Cas system-based on-site detection technologies have showed a great potential in the detection of agri-food safety. Impressively, the integration of CRISPR/Cas systems-based biosensing technologies with portable detection devices (e.g., nanopore-based detection devices, lateral flow assay, smartphone-based detection devices, and microfluidic devices) is very promising for the on-site detection of agri-food contaminants. Additionally, CRISPR/Cas system-based biosensing technologies can be further integrated with much more innovative technologies for the development of novel detection platforms to realize the more reliable on-site detection of agri-food safety.
Keywords

Full text: Available Collection: Databases of international organizations Database: EuropePMC Language: English Journal: Trends in food science & technology. Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: EuropePMC Language: English Journal: Trends in food science & technology. Year: 2022 Document Type: Article