Your browser doesn't support javascript.
Gut Microbiome in COVID-19: New Insights
Delineating Health and Health System: Mechanistic Insights into Covid 19 Complications ; : 333-347, 2021.
Article in English | Scopus | ID: covidwho-2326229
ABSTRACT
The last discovered organ of the human body is microbiome which is present at different sites in it. Gut microbiome consists of about 1000–1500 bacterial species and as regulated by genetic makeup, lifestyle, and environmental conditions, the gut microbiota of a healthy individual can comprise approximately 160 species of bacteria. Majority of gut microbiome consists of Firmicutes, Actinobacteria, Bacteroidetes, and to a lesser extent Proteobacteria, Euryarchaeota, Fusobacteria, and Verrucomicrobia. The gut-lung axis is involved in the migration of immune cells from gut to respiratory tract through circulation and encourages the host's ability to fight infections. The gut regulates the responses in lungs via host-acquired inflammatory mediators in the circulation. Dendritic cells located in the Peyer's patches of the intestine, macrophages, and Langerhans cells are the major antigen-presenting cells that play a vital role in the modulation and development of innate immune response. Gut microbiota interacts via the regulation and development of adaptive immune response. B and T lymphocytes are the key players of adaptive immunity. CD4 + T cells after activation differentiate into four major kinds of cell classes (1) regulatory T cells (Treg), (2) Th2, (3) Th1, and (4) Th17 cells. Gut microbial interactions can induce the production of various types of immune cells as demonstrated by various studies. For instance, Clostridia induces the formation of Treg cells. Likewise, Bacteroides fragilis inhabiting the gut can incite the production of Th1 cells and production of T17 cells is stimulated by segmental filamentous bacteria. Gut microbiota also plays a vital role in the physiology and metabolism leading to the synthesis of various immunoregulatory metabolites such as SCFAs, antimicrobial peptides (AMPs), amino acids, and polyamines. SARS-CoV-2 virus entry to the cell is via ACE2 receptor present in respiratory epithelium and gut epithelium. This receptor is highly expressed (100 times more than in the lung) in the epithelial cells of the stomach, duodenum, ileum, and rectum as well as cholangiocytes and hepatocytes. High level of ACE2 receptor expressing in the gastrointestinal epithelial cells along with high-level co-expression of TMPRSS2 (cellular serine peptidase) causes coronavirus to infect gastrointestinal tract along with lungs leading to altered intestinal permeability and enterocyte malabsorption with symptoms of diarrhea in patients of COVID-19. Hence, COVID-19 patients with gastrointestinal symptoms have significantly longer duration of illness and viral clearance time than patients without any gastrointestinal symptoms. Obese patients with gut dysbiosis have decreased population of Bacteroides species. COVID-19 patients with type 2 diabetics have increased population of Fusobacterium, Ruminococcus, and Blautia with decreased population of Bacteroides, Bifidobacterium, Faecalibacterium, Akkermansia, and Roseburia. Diet with low fiber, high fat, and high carbohydrate causes gut dysbiosis. Intake of high-fiber diet consisting of whole grains, vegetables, and fruits induces growth of Bifidobacterium, Bacteroides, and Lactobacilli. Probiotics are nonpathogenic live organisms which are safe to be taken as dietary supplements. The major genera of probiotics are Lactobacillus, Bifidobacterium, and Saccharomyces. These probiotics increase the activity of T cells, NK cell, and polymorphonuclear cells. Prebiotics in the form of maize fiber, inulin, and polydextrose improves digestion and immunity. Hence, healthy gut microbiome with its strong immune intervention may bring recovery in COVID-19 patients. However, so far no published studies have reported that probiotics can be used as an adjunctive therapy in our fight against the SARS-CoV-2 infection. A far-reaching approach should consist of randomized, multicenter, controlled trials to explore the potential benefits of gut microbiome and how changes in dietary habits can be used as an add-on strategy against the COVID-19 pandemic. © The Author(s), under exc us ve licence to Springer Nature Singapore Pte Ltd. 2021.
Keywords

Full text: Available Collection: Databases of international organizations Database: Scopus Type of study: Experimental Studies / Randomized controlled trials Topics: Long Covid / Traditional medicine Language: English Journal: Delineating Health and Health System: Mechanistic Insights into Covid 19 Complications Year: 2021 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Scopus Type of study: Experimental Studies / Randomized controlled trials Topics: Long Covid / Traditional medicine Language: English Journal: Delineating Health and Health System: Mechanistic Insights into Covid 19 Complications Year: 2021 Document Type: Article