Your browser doesn't support javascript.
Life Cycle Assessment of Nanofibrous Air Filtering Materials and Respirators
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2326461
ABSTRACT
The current spread of COVID-19 pandemics resulted in a surge of a need of respiratory protection devices, including medical facemasks and facepiece respirators. Large amounts of products based on nonwoven filtration material from non-renewable petroleum based plastics (polyethylene) has raised global concerns about excessive environmental impacts of these products. Unfortunately, the replacement of polypropylene nonwoven microfibre based single use masks by the multiple use products did not appear as an effective strategy due to a lower filtration performance, although potentially lower environmental impacts. Nanofibre based filtration devices introduce themselves as potentially more environmentally friendly ones due to a lower overall usage of raw polymer compared to microfibrous ones. We present the LCA modelling of environmental impacts of respiratory protective devices with nanofibrous filter materials and compare those against traditional micro fibrous materials (FFP1 and FFP2 respirator) and medical facemask. Generally, due to a lower mass of nanofibre, these products emerge as a better environmental option, providing similar protection level. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.
Keywords
Search on Google
Collection: Databases of international organizations Database: Scopus Language: English Journal: 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS

Search on Google
Collection: Databases of international organizations Database: Scopus Language: English Journal: 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 Year: 2022 Document Type: Article