Your browser doesn't support javascript.
Comparing the Binding Interactions in the Receptor Binding Domains of SARS-CoV-2 and SARS-CoV.
Amin, Muhamed; Sorour, Mariam K; Kasry, Amal.
  • Amin M; Department of Sciences, University College Groningen, University of Groningen, Hoendiepskade 23/24, 9718 BG Groningen, The Netherlands.
  • Sorour MK; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
  • Kasry A; Centre for Theoretical Physics, The British University in Egypt, Sherouk City, 11837 Cairo, Egypt.
J Phys Chem Lett ; 11(12): 4897-4900, 2020 Jun 18.
Article in English | MEDLINE | ID: covidwho-456421
ABSTRACT
SARS-CoV-2, since emerging in Wuhan, China, has been a major concern because of its high infection rate and has left more than six million infected people around the world. Many studies endeavored to reveal the structure of the SARS-CoV-2 compared to the SARS-CoV, in order to find solutions to suppress this high infection rate. Some of these studies showed that the mutations in the SARS-CoV spike (S) protein might be responsible for its higher affinity to the ACE2 human cell receptor. In this work, we used molecular dynamics simulations and Monte Carlo sampling to compare the binding affinities of the S proteins of SARS-CoV and SARS-CoV-2 to the ACE2. Our results show that the protein surface of the ACE2 at the receptor binding domain (RBD) exhibits negative electrostatic potential, while a positive potential is observed for the S proteins of SARS-CoV/SARS-CoV-2. In addition, the binding energies at the interface are slightly higher for SARS-CoV-2 because of enhanced electrostatic interactions. The major contributions to the electrostatic binding energies result from the salt bridges forming between R426 and ACE-2-E329 in the case of SARS-CoV and K417 and ACE2-D30 in the SARS-CoV-2. In addition, our results indicate that the enhancement in the binding energy is not due to a single mutant but rather because of the sophisticated structural changes induced by all these mutations together. This finding suggests that it is implausible for the SARS-CoV-2 to be a lab-engineered virus.
Subject(s)

Full text: Available Collection: International databases Database: MEDLINE Main subject: Severe acute respiratory syndrome-related coronavirus / Receptor, Angiotensin, Type 2 / Betacoronavirus Limits: Humans Language: English Journal: J Phys Chem Lett Year: 2020 Document Type: Article Affiliation country: Acs.jpclett.0c01064

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Severe acute respiratory syndrome-related coronavirus / Receptor, Angiotensin, Type 2 / Betacoronavirus Limits: Humans Language: English Journal: J Phys Chem Lett Year: 2020 Document Type: Article Affiliation country: Acs.jpclett.0c01064