Your browser doesn't support javascript.
Suction mitigation of airborne particulate generated during sinonasal drilling and cautery.
Workman, Alan D; Xiao, Roy; Feng, Allen; Gadkaree, Shekhar K; Quesnel, Alicia M; Bleier, Benjamin S; Scangas, George A.
  • Workman AD; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA.
  • Xiao R; Harvard Medical School, Boston, MA.
  • Feng A; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA.
  • Gadkaree SK; Harvard Medical School, Boston, MA.
  • Quesnel AM; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA.
  • Bleier BS; Harvard Medical School, Boston, MA.
  • Scangas GA; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA.
Int Forum Allergy Rhinol ; 10(10): 1136-1140, 2020 10.
Article in English | MEDLINE | ID: covidwho-603709
ABSTRACT

BACKGROUND:

Coronavirus disease 2019 (COVID-19) has significantly impacted endonasal surgery, and recent experimentation has demonstrated that sinonasal drilling and cautery have significant propensity for airborne particulate generation immediately adjacent to the surgical field. In the present investigation, we assessed nasopharyngeal suctioning as a mitigation strategy to decrease particulate spread during simulated endonasal surgical activity.

METHODS:

Airborne particulate generation in the 1-µm to 10-µm range was quantified with an optical particle sizer in real-time during cadaveric-simulated anterior and posterior endonasal drilling and cautery conditions. To test suction mitigation, experiments were performed both with and without a rigid suction placed in the contralateral nostril, terminating in the nasopharynx.

RESULTS:

Both anterior (medial maxillary wall and nasal septum) and posterior (sphenoid rostrum) drilling produced significant particulate generation in the 1-µm to 10-µm range throughout the duration of drilling (p < 0.001) without the use of suction, whereas nasopharyngeal suction use eliminated the detection of generated airborne particulate. A similar effect was seen with nasal cautery, with significant particle generation (p < 0.001) that was reduced to undetectable levels with the use of nasopharyngeal suction.

CONCLUSION:

The use of nasopharyngeal suctioning via the contralateral nostril minimizes airborne particulate spread during simulated sinonasal drilling and cautery. In the era of COVID-19, this technique offers an immediately available measure that may increase surgical safety.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Paranasal Sinuses / Suction / Cautery / Nasopharynx / Endoscopy / SARS-CoV-2 / COVID-19 Limits: Humans Language: English Journal: Int Forum Allergy Rhinol Year: 2020 Document Type: Article Affiliation country: Alr.22644

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Paranasal Sinuses / Suction / Cautery / Nasopharynx / Endoscopy / SARS-CoV-2 / COVID-19 Limits: Humans Language: English Journal: Int Forum Allergy Rhinol Year: 2020 Document Type: Article Affiliation country: Alr.22644