Your browser doesn't support javascript.
In vivo expressed biologics for infectious disease prophylaxis: rapid delivery of DNA-based antiviral antibodies.
Andrews, Chasity D; Huang, Yaoxing; Ho, David D; Liberatore, Rachel A.
  • Andrews CD; RenBio, Inc., New York, NY, USA.
  • Huang Y; Aaron Diamond AIDS Research Center, New York, NY, USA.
  • Ho DD; Columbia University Vagelos College of Physicans and Surgeons, New York, NY, USA.
  • Liberatore RA; Aaron Diamond AIDS Research Center, New York, NY, USA.
Emerg Microbes Infect ; 9(1): 1523-1533, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-612922
ABSTRACT
With increasing frequency, humans are facing outbreaks of emerging infectious diseases (EIDs) with the potential to cause significant morbidity and mortality. In the most extreme instances, such outbreaks can become pandemics, as we are now witnessing with COVID-19. According to the World Health Organization, this new disease, caused by the novel coronavirus SARS-CoV-2, has already infected more than 10 million people worldwide and led to 499,913 deaths as of 29 June, 2020. How high these numbers will eventually go depends on many factors, including policies on travel and movement, availability of medical support, and, because there is no vaccine or highly effective treatment, the pace of biomedical research. Other than an approved antiviral drug that can be repurposed, monoclonal antibodies (mAbs) hold the most promise for providing a stopgap measure to lessen the impact of an outbreak while vaccines are in development. Technical advances in mAb identification, combined with the flexibility and clinical experience of mAbs in general, make them ideal candidates for rapid deployment. Furthermore, the development of mAb cocktails can provide a faster route to developing a robust medical intervention than searching for a single, outstanding mAb. In addition, mAbs are well-suited for integration into platform technologies for delivery, in which minimal components need to be changed in order to be redirected against a novel pathogen. In particular, utilizing the manufacturing and logistical benefits of DNA-based platform technologies in order to deliver one or more antiviral mAbs has the potential to revolutionize EID responses.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Antiviral Agents / Pneumonia, Viral / Biological Products / Coronavirus Infections / Pandemics / Antibodies, Viral Type of study: Prognostic study Topics: Vaccines Limits: Animals / Humans Language: English Journal: Emerg Microbes Infect Year: 2020 Document Type: Article Affiliation country: 22221751.2020.1787108

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Antiviral Agents / Pneumonia, Viral / Biological Products / Coronavirus Infections / Pandemics / Antibodies, Viral Type of study: Prognostic study Topics: Vaccines Limits: Animals / Humans Language: English Journal: Emerg Microbes Infect Year: 2020 Document Type: Article Affiliation country: 22221751.2020.1787108