Your browser doesn't support javascript.
Class A G Protein-Coupled Receptor Antagonist Famotidine as a Therapeutic Alternative Against SARS-CoV2: An In Silico Analysis.
Ortega, Joseph T; Serrano, Maria Luisa; Jastrzebska, Beata.
  • Ortega JT; Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
  • Serrano ML; Unidad de Química Medicinal, Facultad de Farmacia, Universidad Central de Venezuela, Caracas 1041-A, Venezuela.
  • Jastrzebska B; Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
Biomolecules ; 10(6)2020 Jun 24.
Article in English | MEDLINE | ID: covidwho-613362
ABSTRACT
The pandemic associated with Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV2) and its disease named COVID-19 challenged the scientific community to discover effective therapeutic solutions in a short period. Repurposing existing drugs is one viable approach that emphasizes speed during these urgent times. Famotidine, a class A G protein-coupled receptor antagonist used for the treatment of gastroesophageal reflux was recently identified in an in silico screening. Additionally, a recent retrospective clinical report showed that the treatment with famotidine provided a good outcome in patients infected with SARS-CoV2. A clinical trial testing effectiveness of famotidine in combination with hydroxychloroquine is currently ongoing in the United States (US). In the 1990s, famotidine was described as an antiviral agent against human immunodeficiency virus (HIV). Interestingly, some HIV protease inhibitors are presently being used against SARS-CoV2. However, it is not clear if famotidine could be effective against SARS-CoV2. Thus, by using a computational analysis, we aimed to examine if the antiviral effect of famotidine could be related to the inhibition of proteases involved in the virus replication. Our results showed that famotidine could interact within the catalytic site of the three proteases associated with SARS-CoV2 replication. However, weak binding affinity of famotidine to these proteases suggests that a successful famotidine therapy could likely be achieved only in combination with other antiviral drugs. Finally, analysis of famotidine's pharmacokinetic parameters indicated that its effect against SARS-CoV2 infection could be reached only upon intravenous administration. This work will contribute to the pharmacological knowledge of famotidine as an antiviral agent against SARS-CoV2.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Antiviral Agents / Pneumonia, Viral / Famotidine / Coronavirus Infections / Receptors, G-Protein-Coupled Type of study: Observational study / Prognostic study / Randomized controlled trials Limits: Humans Language: English Year: 2020 Document Type: Article Affiliation country: Biom10060954

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Antiviral Agents / Pneumonia, Viral / Famotidine / Coronavirus Infections / Receptors, G-Protein-Coupled Type of study: Observational study / Prognostic study / Randomized controlled trials Limits: Humans Language: English Year: 2020 Document Type: Article Affiliation country: Biom10060954