Your browser doesn't support javascript.
Computing the Effects of SARS-CoV-2 on Respiration Regulatory Mechanisms in COVID-19.
Baig, Abdul Mannan.
  • Baig AM; Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Sindh 74800, Pakistan.
ACS Chem Neurosci ; 11(16): 2416-2421, 2020 08 19.
Article in English | MEDLINE | ID: covidwho-618646
ABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been established as a cause of severe alveolar damage and pneumonia in patients with advanced Coronavirus disease (COVID-19). The consolidation of lung parenchyma precipitates the alterations in blood gases in COVID-19 patients that are known to complicate and cause hypoxemic respiratory failure. With SARS-CoV-2 damaging multiple organs in COVID-19, including the central nervous system that regulates the breathing process, it is a daunting task to compute the extent to which the failure of the central regulation of the breathing process contributes to the mortality of COVID-19 affected patients. Emerging data on COVID-19 cases from hospitals and autopsies in the last few months have helped in the understanding of the pathogenesis of respiratory failures in COVID-19. Recent reports have provided overwhelming evidence of the occurrence of acute respiratory failures in COVID-19 due to neurotropism of the brainstem by SARS-CoV-2. In this review, a cascade of events that may follow the alterations in blood gases and possible neurological damage to the respiratory regulation centers in the central nervous system (CNS) in COVID-19 are related to the basic mechanism of respiratory regulation in order to understand the acute respiratory failure reported in this disease. Though a complex metabolic and respiratory dysregulation also occurs with infections caused by SARS-CoV-1 and MERS that are known to contribute toward deaths of the patients in the past, we highlight here the role of systemic dysregulation and the CNS respiratory regulation mechanisms in the causation of mortalities seen in COVID-19. The invasion of the CNS by SARS-CoV-2, as shown recently in areas like the brainstem that control the normal breathing process with nuclei like the pre-Bötzinger complex (pre-BÖTC), may explain why some of the patients with COVID-19, who have been reported to have recovered from pneumonia, could not be weaned from invasive mechanical ventilation and the occurrences of acute respiratory arrests seen in COVID-19. This debate is important for many reasons, one of which is the fact that permanent damage to the medullary respiratory centers by SARS-CoV-2 would not benefit from mechanical ventilators, as is possibly occurring during the management of COVID-19 patients.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Pneumonia, Viral / Respiratory Center / Respiratory Insufficiency / Coronavirus Infections / Hypoxia Type of study: Experimental Studies / Observational study / Prognostic study Limits: Humans Language: English Journal: ACS Chem Neurosci Year: 2020 Document Type: Article Affiliation country: Acschemneuro.0c00349

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Pneumonia, Viral / Respiratory Center / Respiratory Insufficiency / Coronavirus Infections / Hypoxia Type of study: Experimental Studies / Observational study / Prognostic study Limits: Humans Language: English Journal: ACS Chem Neurosci Year: 2020 Document Type: Article Affiliation country: Acschemneuro.0c00349