Your browser doesn't support javascript.
FDA approved drugs with pharmacotherapeutic potential for SARS-CoV-2 (COVID-19) therapy.
Drozdzal, Sylwester; Rosik, Jakub; Lechowicz, Kacper; Machaj, Filip; Kotfis, Katarzyna; Ghavami, Saeid; Los, Marek J.
  • Drozdzal S; Department of Pharmacokinetics and Monitored Therapy, Pomeranian Medical University in Szczecin, Poland.
  • Rosik J; Department of Pathology, Pomeranian Medical University in Szczecin, Poland.
  • Lechowicz K; Department of Anaesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, Poland.
  • Machaj F; Department of Pathology, Pomeranian Medical University in Szczecin, Poland.
  • Kotfis K; Department of Anaesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, Poland.
  • Ghavami S; Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
  • Los MJ; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Str., 44-100, Gliwice, Poland. Electronic address: mjelos@gmail.com.
Drug Resist Updat ; 53: 100719, 2020 12.
Article in English | MEDLINE | ID: covidwho-645153
ABSTRACT
In December 2019, a novel SARS-CoV-2 coronavirus emerged, causing an outbreak of life-threatening pneumonia in the Hubei province, China, and has now spread worldwide, causing a pandemic. The urgent need to control the disease, combined with the lack of specific and effective treatment modalities, call for the use of FDA-approved agents that have shown efficacy against similar pathogens. Chloroquine, remdesivir, lopinavir/ritonavir or ribavirin have all been successful in inhibiting SARS-CoV-2 in vitro. The initial results of a number of clinical trials involving various protocols of administration of chloroquine or hydroxychloroquine mostly point towards their beneficial effect. However, they may not be effective in cases with persistently high viremia, while results on ivermectin (another antiparasitic agent) are not yet available. Interestingly, azithromycin, a macrolide antibiotic in combination with hydroxychloroquine, might yield clinical benefit as an adjunctive. The results of clinical trials point to the potential clinical efficacy of antivirals, especially remdesivir (GS-5734), lopinavir/ritonavir, and favipiravir. Other therapeutic options that are being explored involve meplazumab, tocilizumab, and interferon type 1. We discuss a number of other drugs that are currently in clinical trials, whose results are not yet available, and in various instances we enrich such efficacy analysis by invoking historic data on the treatment of SARS, MERS, influenza, or in vitro studies. Meanwhile, scientists worldwide are seeking to discover novel drugs that take advantage of the molecular structure of the virus, its intracellular life cycle that probably elucidates unfolded-protein response, as well as its mechanism of surface binding and cell invasion, like angiotensin converting enzymes-, HR1, and metalloproteinase inhibitors.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Antiviral Agents / Drug Approval / SARS-CoV-2 / COVID-19 Drug Treatment Type of study: Observational study / Prognostic study / Randomized controlled trials Limits: Animals / Humans Country/Region as subject: North America Language: English Journal: Drug Resist Updat Journal subject: Antineoplastic agents Year: 2020 Document Type: Article Affiliation country: J.drup.2020.100719

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Antiviral Agents / Drug Approval / SARS-CoV-2 / COVID-19 Drug Treatment Type of study: Observational study / Prognostic study / Randomized controlled trials Limits: Animals / Humans Country/Region as subject: North America Language: English Journal: Drug Resist Updat Journal subject: Antineoplastic agents Year: 2020 Document Type: Article Affiliation country: J.drup.2020.100719