Your browser doesn't support javascript.
Repurposing Low-Molecular-Weight Drugs against the Main Protease of Severe Acute Respiratory Syndrome Coronavirus 2.
Gao, Jia; Zhang, Liang; Liu, Xiaodan; Li, Fudong; Ma, Rongsheng; Zhu, Zhongliang; Zhang, Jiahai; Wu, Jihui; Shi, Yunyu; Pan, Yueyin; Ge, Yushu; Ruan, Ke.
  • Gao J; Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road, Hefei, Anhui 230027, P.R. China.
  • Zhang L; Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road, Hefei, Anhui 230027, P.R. China.
  • Liu X; Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road, Hefei, Anhui 230027, P.R. China.
  • Li F; Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road, Hefei, Anhui 230027, P.R. China.
  • Ma R; Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road, Hefei, Anhui 230027, P.R. China.
  • Zhu Z; Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road, Hefei, Anhui 230027, P.R. China.
  • Zhang J; Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road, Hefei, Anhui 230027, P.R. China.
  • Wu J; Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road, Hefei, Anhui 230027, P.R. China.
  • Shi Y; Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road, Hefei, Anhui 230027, P.R. China.
  • Pan Y; Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road, Hefei, Anhui 230027, P.R. China.
  • Ge Y; Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road, Hefei, Anhui 230027, P.R. China.
  • Ruan K; Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road, Hefei, Anhui 230027, P.R. China.
J Phys Chem Lett ; 11(17): 7267-7272, 2020 Sep 03.
Article in English | MEDLINE | ID: covidwho-678527
ABSTRACT
The coronavirus disease pandemic caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected the global healthcare system. As low-molecular-weight drugs have high potential to completely match interactions with essential SARS-CoV-2 targets, we propose a strategy to identify such drugs using the fragment-based approach. Herein, using ligand- and protein-observed fragment screening approaches, we identified niacin and hit 1 binding to the catalytic pocket of the main protease (Mpro) of SARS-CoV-2, thereby modestly inhibiting the enzymatic activity of Mpro. We further searched for low-molecular-weight drugs containing niacin or hit 1 pharmacophores with enhanced inhibiting activity, e.g., carmofur, bendamustine, triclabendazole, emedastine, and omeprazole, in which omeprazole is the only one binding to the C-terminal domain of SARS-CoV-2 Mpro. Our study demonstrates that the fragment-based approach is a feasible strategy for identifying low-molecular-weight drugs against the SARS-CoV-2 and other potential targets lacking specific drugs.
Subject(s)

Full text: Available Collection: International databases Database: MEDLINE Main subject: Antiviral Agents / Peptide Hydrolases / Drug Repositioning / Betacoronavirus Language: English Journal: J Phys Chem Lett Year: 2020 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Antiviral Agents / Peptide Hydrolases / Drug Repositioning / Betacoronavirus Language: English Journal: J Phys Chem Lett Year: 2020 Document Type: Article