Your browser doesn't support javascript.
In Silico Screening of Potential Spike Glycoprotein Inhibitors of SARS-CoV-2 with Drug Repurposing Strategy.
Wei, Tian-Zi; Wang, Hao; Wu, Xue-Qing; Lu, Yi; Guan, Sheng-Hui; Dong, Feng-Quan; Dong, Chen-le; Zhu, Gu-Li; Bao, Yu-Zhou; Zhang, Jian; Wang, Guan-Yu; Li, Hai-Ying.
  • Wei TZ; Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
  • Wang H; School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
  • Wu XQ; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China.
  • Lu Y; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, 518055, China.
  • Guan SH; Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518055, China.
  • Dong FQ; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, 518055, China.
  • Dong CL; Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518055, China.
  • Zhu GL; School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
  • Bao YZ; Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
  • Zhang J; Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518055, China.
  • Wang GY; Department of Cardiology, Shenzhen University General Hospital, Shenzhen, Guangdong, 518055, China.
  • Li HY; Department of Obstetrics and Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
Chin J Integr Med ; 26(9): 663-669, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-691259
ABSTRACT

OBJECTIVE:

To select potential molecules that can target viral spike proteins, which may potentially interrupt the interaction between the human angiotension-converting enzyme 2 (ACE2) receptor and viral spike protein by virtual screening.

METHODS:

The three-dimensional (3D)-coordinate file of the receptor-binding domain (RBD)-ACE2 complex for searching a suitable docking pocket was firstly downloaded and prepared. Secondly, approximately 15,000 molecular candidates were prepared, including US Food and Drug Administration (FDA)-approved drugs from DrugBank and natural compounds from Traditional Chinese Medicine Systems Pharmacology (TCMSP), for the docking process. Then, virtual screening was performed and the binding energy in Autodock Vina was calculated. Finally, the top 20 molecules with high binding energy and their Chinese medicine (CM) herb sources were listed in this paper.

RESULTS:

It was found that digitoxin, a cardiac glycoside in DrugBank and bisindigotin in TCMSP had the highest docking scores. Interestingly, two of the CM herbs containing the natural compounds that had relatively high binding scores, Forsythiae fructus and Isatidis radix, are components of Lianhua Qingwen (), a CM formula reportedly exerting activity against severe acute respiratory syndrome (SARS)-Cov-2. Moreover, raltegravir, an HIV integrase inhibitor, was found to have a relatively high binding score.

CONCLUSIONS:

A class of compounds, which are from FDA-approved drugs and CM natural compounds, that had high binding energy with RBD of the viral spike protein. Our work provides potential candidates for other researchers to identify inhibitors to prevent SARS-CoV-2 infection, and highlights the importance of CM and integrative application of CM and Western medicine on treating COVID-19.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Pneumonia, Viral / Drugs, Chinese Herbal / Glycoproteins / Coronavirus Infections / Imaging, Three-Dimensional / Drug Repositioning / Molecular Docking Simulation Type of study: Diagnostic study / Prognostic study Topics: Traditional medicine Limits: Humans Country/Region as subject: North America / Asia Language: English Journal: Chin J Integr Med Journal subject: Complementary Therapies Year: 2020 Document Type: Article Affiliation country: S11655-020-3427-6

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Pneumonia, Viral / Drugs, Chinese Herbal / Glycoproteins / Coronavirus Infections / Imaging, Three-Dimensional / Drug Repositioning / Molecular Docking Simulation Type of study: Diagnostic study / Prognostic study Topics: Traditional medicine Limits: Humans Country/Region as subject: North America / Asia Language: English Journal: Chin J Integr Med Journal subject: Complementary Therapies Year: 2020 Document Type: Article Affiliation country: S11655-020-3427-6