Your browser doesn't support javascript.
Global cataloguing of variations in untranslated regions of viral genome and prediction of key host RNA binding protein-microRNA interactions modulating genome stability in SARS-CoV-2.
Mukherjee, Moumita; Goswami, Srikanta.
  • Mukherjee M; National Institute of Biomedical Genomics, Kalyani, West Bengal, India.
  • Goswami S; National Institute of Biomedical Genomics, Kalyani, West Bengal, India.
PLoS One ; 15(8): e0237559, 2020.
Article in English | MEDLINE | ID: covidwho-840723
Preprint
This scientific journal article is probably based on a previously available preprint. It has been identified through a machine matching algorithm, human confirmation is still pending.
See preprint
ABSTRACT

BACKGROUND:

The world is going through the critical phase of COVID-19 pandemic, caused by human coronavirus, SARS-CoV-2. Worldwide concerted effort to identify viral genomic changes across different sub-types has identified several strong changes in the coding region. However, there have not been many studies focusing on the variations in the 5' and 3' untranslated regions and their consequences. Considering the possible importance of these regions in host mediated regulation of viral RNA genome, we wanted to explore the phenomenon.

METHODS:

To have an idea of the global changes in 5' and 3'-UTR sequences, we downloaded 8595 complete and high-coverage SARS-CoV-2 genome sequence information from human host in FASTA format from Global Initiative on Sharing All Influenza Data (GISAID) from 15 different geographical regions. Next, we aligned them using Clustal Omega software and investigated the UTR variants. We also looked at the putative host RNA binding protein (RBP) and microRNA binding sites in these regions by 'RBPmap' and 'RNA22 v2' respectively. Expression status of selected RBPs and microRNAs were checked in lungs tissue.

RESULTS:

We identified 28 unique variants in SARS-CoV-2 UTR region based on a minimum variant percentage cut-off of 0.5. Along with 241C>T change the important 5'-UTR change identified was 187A>G, while 29734G>C, 29742G>A/T and 29774C>T were the most familiar variants of 3'UTR among most of the continents. Furthermore, we found that despite the variations in the UTR regions, binding of host RBP to them remains mostly unaltered, which further influenced the functioning of specific miRNAs.

CONCLUSION:

Our results, shows for the first time in SARS-Cov-2 infection, a possible cross-talk between host RBPs-miRNAs and viral UTR variants, which ultimately could explain the mechanism of escaping host RNA decay machinery by the virus. The knowledge might be helpful in developing anti-viral compounds in future.
Subject(s)

Full text: Available Collection: International databases Database: MEDLINE Main subject: Pneumonia, Viral / RNA, Viral / RNA-Binding Proteins / Genome, Viral / Coronavirus Infections / 3' Untranslated Regions / 5' Untranslated Regions / MicroRNAs / Genomic Instability / Host-Pathogen Interactions Type of study: Prognostic study / Randomized controlled trials Topics: Variants Limits: Humans Language: English Journal: PLoS One Journal subject: Science / Medicine Year: 2020 Document Type: Article Affiliation country: Journal.pone.0237559

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Pneumonia, Viral / RNA, Viral / RNA-Binding Proteins / Genome, Viral / Coronavirus Infections / 3' Untranslated Regions / 5' Untranslated Regions / MicroRNAs / Genomic Instability / Host-Pathogen Interactions Type of study: Prognostic study / Randomized controlled trials Topics: Variants Limits: Humans Language: English Journal: PLoS One Journal subject: Science / Medicine Year: 2020 Document Type: Article Affiliation country: Journal.pone.0237559