Your browser doesn't support javascript.
Of Mice and Men: The Coronavirus MHV and Mouse Models as a Translational Approach to Understand SARS-CoV-2.
Körner, Robert W; Majjouti, Mohamed; Alcazar, Miguel A Alejandre; Mahabir, Esther.
  • Körner RW; Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
  • Majjouti M; Comparative Medicine, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany.
  • Alcazar MAA; Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics-Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
  • Mahabir E; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.
Viruses ; 12(8)2020 08 12.
Article in English | MEDLINE | ID: covidwho-717762
ABSTRACT
The fatal acute respiratory coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since COVID-19 was declared a pandemic by the World Health Organization in March 2020, infection and mortality rates have been rising steadily worldwide. The lack of a vaccine, as well as preventive and therapeutic strategies, emphasize the need to develop new strategies to mitigate SARS-CoV-2 transmission and pathogenesis. Since mouse hepatitis virus (MHV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2 share a common genus, lessons learnt from MHV and SARS-CoV could offer mechanistic insights into SARS-CoV-2. This review provides a comprehensive review of MHV in mice and SARS-CoV-2 in humans, thereby highlighting further translational avenues in the development of innovative strategies in controlling the detrimental course of SARS-CoV-2. Specifically, we have focused on various aspects, including host species, organotropism, transmission, clinical disease, pathogenesis, control and therapy, MHV as a model for SARS-CoV and SARS-CoV-2 as well as mouse models for infection with SARS-CoV and SARS-CoV-2. While MHV in mice and SARS-CoV-2 in humans share various similarities, there are also differences that need to be addressed when studying murine models. Translational approaches, such as humanized mouse models are pivotal in studying the clinical course and pathology observed in COVID-19 patients. Lessons from prior murine studies on coronavirus, coupled with novel murine models could offer new promising avenues for treatment of COVID-19.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Pneumonia, Viral / Coronavirus Infections / Murine hepatitis virus / Betacoronavirus Type of study: Prognostic study Topics: Vaccines Limits: Animals / Humans Language: English Year: 2020 Document Type: Article Affiliation country: V12080880

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Pneumonia, Viral / Coronavirus Infections / Murine hepatitis virus / Betacoronavirus Type of study: Prognostic study Topics: Vaccines Limits: Animals / Humans Language: English Year: 2020 Document Type: Article Affiliation country: V12080880