Your browser doesn't support javascript.
A high ATP concentration enhances the cooperative translocation of the SARS coronavirus helicase nsP13 in the unwinding of duplex RNA.
Jang, Kyoung-Jin; Jeong, Seonghwan; Kang, Dong Young; Sp, Nipin; Yang, Young Mok; Kim, Dong-Eun.
  • Jang KJ; Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
  • Jeong S; Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology (IBST), Konkuk University, Seoul, 05029, Republic of Korea.
  • Kang DY; Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
  • Sp N; Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology (IBST), Konkuk University, Seoul, 05029, Republic of Korea.
  • Yang YM; Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology (IBST), Konkuk University, Seoul, 05029, Republic of Korea.
  • Kim DE; Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology (IBST), Konkuk University, Seoul, 05029, Republic of Korea. ymyang@kku.ac.kr.
Sci Rep ; 10(1): 4481, 2020 03 11.
Article in English | MEDLINE | ID: covidwho-7753
ABSTRACT
Severe acute respiratory syndrome coronavirus nonstructural protein 13 (SCV nsP13), a superfamily 1 helicase, plays a central role in viral RNA replication through the unwinding of duplex RNA and DNA with a 5' single-stranded tail in a 5' to 3' direction. Despite its putative role in viral RNA replication, nsP13 readily unwinds duplex DNA by cooperative translocation. Herein, nsP13 exhibited different characteristics in duplex RNA unwinding than that in duplex DNA. nsP13 showed very poor processivity on duplex RNA compared with that on duplex DNA. More importantly, nsP13 inefficiently unwinds duplex RNA by increasing the 5'-ss tail length. As the concentration of nsP13 increased, the amount of unwound duplex DNA increased and that of unwound duplex RNA decreased. The accumulation of duplex RNA/nsP13 complexes increased as the concentration of nsP13 increased. An increased ATP concentration in the unwinding of duplex RNA relieved the decrease in duplex RNA unwinding. Thus, nsP13 has a strong affinity for duplex RNA as a substrate for the unwinding reaction, which requires increased ATPs to processively unwind duplex RNA. Our results suggest that duplex RNA is a preferred substrate for the helicase activity of nsP13 than duplex DNA at high ATP concentrations.
Subject(s)

Full text: Available Collection: International databases Database: MEDLINE Main subject: RNA, Double-Stranded / RNA, Viral / Adenosine Triphosphate / Viral Nonstructural Proteins / RNA Helicases / Severe acute respiratory syndrome-related coronavirus / Methyltransferases Language: English Journal: Sci Rep Year: 2020 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: RNA, Double-Stranded / RNA, Viral / Adenosine Triphosphate / Viral Nonstructural Proteins / RNA Helicases / Severe acute respiratory syndrome-related coronavirus / Methyltransferases Language: English Journal: Sci Rep Year: 2020 Document Type: Article