Your browser doesn't support javascript.
Facemasks simple but powerful weapons to protect against COVID-19 spread: Can they have sides effects?
Atangana, Ernestine; Atangana, Abdon.
  • Atangana E; Centre for Environmental Management, Faculty of Natural and Agricultural Science, University of the Free State Bloemfontein, 9301, South Africa.
  • Atangana A; Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the Free State, 9301 Bloemfontein, South Africa.
Results Phys ; 19: 103425, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-807917
ABSTRACT
In the last few months, the spread of COVID-19 among humans has caused serious damages around the globe letting many countries economically unstable. Results obtained from conducted research by epidemiologists and virologists showed that, COVID-19 is mainly spread from symptomatic individuals to others who are in close contact via respiratory droplets, mouth and nose, which are the primary mode of transmission. World health organization regulations to help stop the spread of this deadly virus, indicated that, it is compulsory to utilize respiratory protective devices such as facemasks in the public. Indeed, the use of these facemasks around the globe has helped reduce the spread of COVID-19. The primary aim of facemasks, is to avoid inhaling air that could contain droplets with COVID-19. We should note that, respiration process is the movement of oxygen from external atmosphere to the cells within tissue and the transport of carbon dioxide outside. However, the rebreathing of carbon dioxide using a facemask has not been taken into consideration. The hypercapnia (excess inhaled content of CO2) has been recognized to be related to symptoms of fatigue, discomfort, muscular weakness, headaches as well as drowsiness. Rebreathing of CO2 has been a key to concern regarding the use of a facemask. Rebreathing usually occur when an expired air that is rich in CO2 stays long than normal in the breathing space of the respirator after a breath. The increase of the arterial CO2 concentration leads to symptoms that are aforementioned. Studies have been conducted on facemask shortages and on the appropriate facemask required to reduce the spread of COVID-19; however no study has been conducted to assess the possible relationship between CO2 inhalation due to facemask, to determine and recommend which mask is appropriate in the reduction of the spread of the coronavirus while simultaneously avoid CO2 inhalation by the facemask users. In the current paper, we provided a literature review on the use of facemasks with the aim to determine which facemasks could be used to avoid re-inhaling rejected CO2. Additionally, we presented mathematical models depicting the transport of COVID-19 spread through wind with high speed. We considered first mathematical models for which the effect air-heterogeneity is neglected, such that air flow follows Markovian process with a retardation factor, these models considered two different scenarios, the speed of wind is constant and time-space dependent. Secondly, we assumed that the wind movement could follow different processes, including the power law process, fading memory process and a two-stage processes, these lead us to use differential operators with power law, exponential decay and the generalized Mittag-Leffler function with the aim to capture these processes. A numerical technique based on the Lagrange polynomial interpolation was used to solve some of these models numerically. The numerical solutions were coded in MATLAB software for simulations. The results obtained from the mathematical simulation showed that a wind with speed of 100 km/h could transport droplets as far as 300 m. The results obtained from these simulations together with those presented by other researchers lead us to conclude that, the wind could have helped spread COVID-19 in some places around the world, especially in coastal areas. Therefore, appropriate facemasks that could help avoid re-inhaling enough CO2 should be used every time one is in open air even when alone especially in windy environment.
Keywords

Full text: Available Collection: International databases Database: MEDLINE Type of study: Experimental Studies / Reviews Topics: Long Covid Language: English Journal: Results Phys Year: 2020 Document Type: Article Affiliation country: J.rinp.2020.103425

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Type of study: Experimental Studies / Reviews Topics: Long Covid Language: English Journal: Results Phys Year: 2020 Document Type: Article Affiliation country: J.rinp.2020.103425