Your browser doesn't support javascript.
Novel hybrid antiviral VTRRT-13V2.1 against SARS-CoV2 main protease: retro-combinatorial synthesis and molecular dynamics analysis.
Tiwari, Vishvanath.
  • Tiwari V; Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India.
Heliyon ; 6(10): e05122, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-834360
ABSTRACT
The COVID-19 pandemic caused by SARS-CoV-2 has now emerged as a global health problem and is responsible for high mortality and morbidity. The SARS-CoV-2 main protease (Mpro) emerged as a promising drug target because of its essential role in the processing of polyproteins, which is translated from viral RNA. The present study reports a designed novel hybrid antiviral molecule (VTRRT-13.V2.1) against SARS-CoV2 main protease. A series of different combinations of hybrid antiviral were generated from nonspecific antiviral molecules currently used to control COVID-19. To enhance the specificity of the designed hybrid antiviral molecule, the core pocket region of the active site of Mpro protein was targeted. In-silico screening, molecular mechanics, molecular dynamics simulation (MDS) analysis identified a hybrid VTRRT-13.V2 molecule. Retrosynthetic analysis and combinatorial synthesis generated 1000 analogs of VTRRT-13.V2 molecules. Docking, molecular mechanics, and MDS analysis selected VTRRT-13.V2.1 as a possible inhibitor for SARS-CoV2 main protease. Comparative analysis of all the results showed that VTRRT-13.V2.1 have the highest docking Glide score (-12.28 kcal/mol) and best binding energy (-52.23 kcal/mol) as compared to the other hybrid constructs such as VTRRT-13.V2 (-9.47 and -47.36 kcal/mol), VTRRT-13 (-8.9 and -47.55 kcal/mol), and current antiviral investigated. The mutational sensitivity screening showed that binding residues of Mpro are not present in mutation hotspots. It was also observed that VTRRT-13.V2.1 does not have any human off-targets. SARS-CoV2 main protease is essential for the survival of this virus; hence, a designed novel hybrid antiviral molecule (VTRRT-13.V2.1) might be useful to control the infection of COVID-19 infection.
Keywords

Full text: Available Collection: International databases Database: MEDLINE Type of study: Prognostic study Language: English Journal: Heliyon Year: 2020 Document Type: Article Affiliation country: J.heliyon.2020.e05122

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Type of study: Prognostic study Language: English Journal: Heliyon Year: 2020 Document Type: Article Affiliation country: J.heliyon.2020.e05122