Your browser doesn't support javascript.
Humidity and Deposition Solution Play a Critical Role in Virus Inactivation by Heat Treatment of N95 Respirators.
Rockey, Nicole; Arts, Peter J; Li, Lucinda; Harrison, Katherine R; Langenfeld, Kathryn; Fitzsimmons, William J; Lauring, Adam S; Love, Nancy G; Kaye, Keith S; Raskin, Lutgarde; Roberts, William W; Hegarty, Bridget; Wigginton, Krista R.
  • Rockey N; Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA.
  • Arts PJ; Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA.
  • Li L; Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA.
  • Harrison KR; Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA.
  • Langenfeld K; Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA.
  • Fitzsimmons WJ; Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA.
  • Lauring AS; Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA.
  • Love NG; Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA.
  • Kaye KS; Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA.
  • Raskin L; Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA.
  • Roberts WW; Department of Urology, University of Michigan Health System, Ann Arbor, Michigan, USA.
  • Hegarty B; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
  • Wigginton KR; Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA.
mSphere ; 5(5)2020 10 21.
Article in English | MEDLINE | ID: covidwho-889854
Preprint
This scientific journal article is probably based on a previously available preprint. It has been identified through a machine matching algorithm, human confirmation is still pending.
See preprint
ABSTRACT
Supply shortages of N95 respirators during the coronavirus disease 2019 (COVID-19) pandemic have motivated institutions to develop feasible and effective N95 respirator reuse strategies. In particular, heat decontamination is a treatment method that scales well and can be implemented in settings with variable or limited resources. Prior studies using multiple inactivation methods, however, have often focused on a single virus under narrowly defined conditions, making it difficult to develop guiding principles for inactivating emerging or difficult-to-culture viruses. We systematically explored how temperature, humidity, and virus deposition solutions impact the inactivation of viruses deposited and dried on N95 respirator coupons. We exposed four virus surrogates across a range of structures and phylogenies, including two bacteriophages (MS2 and phi6), a mouse coronavirus (murine hepatitis virus [MHV]), and a recombinant human influenza A virus subtype H3N2 (IAV), to heat treatment for 30 min in multiple deposition solutions across several temperatures and relative humidities (RHs). We observed that elevated RH was essential for effective heat inactivation of all four viruses tested. For heat treatments between 72°C and 82°C, RHs greater than 50% resulted in a >6-log10 inactivation of bacteriophages, and RHs greater than 25% resulted in a >3.5-log10 inactivation of MHV and IAV. Furthermore, deposition of viruses in host cell culture media greatly enhanced virus inactivation by heat and humidity compared to other deposition solutions, such as phosphate-buffered saline, phosphate-buffered saline with bovine serum albumin, and human saliva. Past and future heat treatment methods must therefore explicitly account for deposition solutions as a factor that will strongly influence observed virus inactivation rates. Overall, our data set can inform the design and validation of effective heat-based decontamination strategies for N95 respirators and other porous surfaces, especially for emerging viruses that may be of immediate and future public health concern.IMPORTANCE Shortages of personal protective equipment, including N95 respirators, during the coronavirus (CoV) disease 2019 (COVID-19) pandemic have highlighted the need to develop effective decontamination strategies for their reuse. This is particularly important in health care settings for reducing exposure to respiratory viruses, like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19. Although several treatment methods are available, a widely accessible strategy will be necessary to combat shortages on a global scale. We demonstrate that the combination of heat and humidity inactivates a range of RNA viruses, including both viral pathogens and common viral pathogen surrogates, after deposition on N95 respirators and achieves the necessary virus inactivation detailed by the U.S. Food and Drug Administration guidelines to validate N95 respirator decontamination technologies. We further demonstrate that depositing viruses onto surfaces when suspended in culture media can greatly enhance observed inactivation, adding caution to how heat and humidity treatment methods are validated.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Virus Diseases / Ventilators, Mechanical / Decontamination / Virus Physiological Phenomena / Virus Inactivation / Hot Temperature / Humidity Type of study: Prognostic study Limits: Humans Language: English Year: 2020 Document Type: Article Affiliation country: MSphere.00588-20

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Virus Diseases / Ventilators, Mechanical / Decontamination / Virus Physiological Phenomena / Virus Inactivation / Hot Temperature / Humidity Type of study: Prognostic study Limits: Humans Language: English Year: 2020 Document Type: Article Affiliation country: MSphere.00588-20