Your browser doesn't support javascript.
Impact of COVID-19 on the cerebrovascular system and the prevention of RBC lysis.
Akhter, N; Ahmad, S; Alzahrani, F A; Dar, S A; Wahid, M; Haque, S; Bhatia, K; Sr Almalki, S; Alharbi, R A; Sindi, A A A.
  • Akhter N; Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia. nakhter@bu.edu.sa; naseem.du@gmail.com.
Eur Rev Med Pharmacol Sci ; 24(19): 10267-10278, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-890962
ABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) uses Angiotensin- converting enzyme 2 (ACE2) receptors to infect host cells which may lead to coronavirus disease (COVID-19). Given the presence of ACE2 receptors in the brain and the critical role of the renin-angiotensin system (RAS) in brain functions, special attention to brain microcirculation and neuronal inflammation is warranted during COVID-19 treatment. Neurological complications reported among COVID-19 patients range from mild dizziness, headache, hypogeusia, hyposmia to severe like encephalopathy, stroke, Guillain-Barre Syndrome (GBS), CNS demyelination, infarcts, microhemorrhages and nerve root enhancement. The pathophysiology of these complications is likely via direct viral infection of the CNS and PNS tissue or through indirect effects including post- viral autoimmune response, neurological consequences of sepsis, hyperpyrexia, hypoxia and hypercoagulability among critically ill COVID-19 patients. Further, decreased deformability of red blood cells (RBC) may be contributing to inflammatory conditions and hypoxia in COVID-19 patients. Haptoglobin, hemopexin, heme oxygenase-1 and acetaminophen may be used to maintain the integrity of the RBC membrane.
Subject(s)

Full text: Available Collection: International databases Database: MEDLINE Main subject: Brain / Erythrocytes / COVID-19 / Hemolysis / Nervous System Diseases Type of study: Experimental Studies Topics: Long Covid Limits: Humans Language: English Journal: Eur Rev Med Pharmacol Sci Journal subject: Pharmacology / Toxicology Year: 2020 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Brain / Erythrocytes / COVID-19 / Hemolysis / Nervous System Diseases Type of study: Experimental Studies Topics: Long Covid Limits: Humans Language: English Journal: Eur Rev Med Pharmacol Sci Journal subject: Pharmacology / Toxicology Year: 2020 Document Type: Article