Your browser doesn't support javascript.
3D printed auxetic nasopharyngeal swabs for COVID-19 sample collection.
Arjunan, Arun; Zahid, Suhaib; Baroutaji, Ahmad; Robinson, John.
  • Arjunan A; School of Engineering, University of Wolverhampton, Telford Innovation Campus, Telford, TF2 9NT, UK. Electronic address: a.arjunan@wlv.ac.uk.
  • Zahid S; School of Engineering, University of Wolverhampton, Telford Innovation Campus, Telford, TF2 9NT, UK.
  • Baroutaji A; School of Engineering, University of Wolverhampton, Telford Innovation Campus, Telford, TF2 9NT, UK.
  • Robinson J; School of Engineering, University of Wolverhampton, Telford Innovation Campus, Telford, TF2 9NT, UK; 6DME Ltd., Stirchley Road, Telford, TF3 1EB, UK.
J Mech Behav Biomed Mater ; 114: 104175, 2021 02.
Article in English | MEDLINE | ID: covidwho-919607
ABSTRACT
The COVID-19 pandemic has resulted in worldwide shortages of nasopharyngeal swabs required for sample collection. While the shortages are becoming acute due to supply chain disruptions, the demand for testing has increased both as a prerequisite to lifting restrictions and in preparation for the second wave. One of the potential solutions to this crisis is the development of 3D printed nasopharyngeal swabs that behave like traditional swabs. However, the opportunity to digitally conceive and fabricate swabs allows for design improvements that can potentially reduce patient pain and discomfort. The study reports the progress that has been made on the development of auxetic nasopharyngeal swabs that can shrink under axial resistance. This allows the swab to navigate through the nasal cavity with significantly less stress on the surrounding tissues. This is achieved through systematically conceived negative Poisson's ratio (-υ) structures in a biocompatible material. Finite element (FE) and surrogate modelling techniques were employed to identify the most optimal swab shape that allows for the highest negative strain (-εlat) under safe stress (σvon). The influence and interaction effects of the geometrical parameters on the swab's performance were also characterised. The research demonstrates a new viewpoint for the development of functional nasopharyngeal swabs that can be 3D printed to reduce patient discomfort. The methodology can be further exploited to address various challenges in biomedical devices and redistributed manufacturing.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Specimen Handling / Nasopharynx / Printing, Three-Dimensional / COVID-19 Type of study: Diagnostic study Language: English Journal: J Mech Behav Biomed Mater Journal subject: Biomedical Engineering Year: 2021 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Specimen Handling / Nasopharynx / Printing, Three-Dimensional / COVID-19 Type of study: Diagnostic study Language: English Journal: J Mech Behav Biomed Mater Journal subject: Biomedical Engineering Year: 2021 Document Type: Article