Your browser doesn't support javascript.
Recombinant ACE2 Expression Is Required for SARS-CoV-2 To Infect Primary Human Endothelial Cells and Induce Inflammatory and Procoagulative Responses.
Nascimento Conde, Jonas; Schutt, William R; Gorbunova, Elena E; Mackow, Erich R.
  • Nascimento Conde J; Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA.
  • Schutt WR; Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA.
  • Gorbunova EE; Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA.
  • Mackow ER; Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA Erich.Mackow@stonybrook.edu.
mBio ; 11(6)2020 12 11.
Article in English | MEDLINE | ID: covidwho-975645
Preprint
This scientific journal article is probably based on a previously available preprint. It has been identified through a machine matching algorithm, human confirmation is still pending.
See preprint
ABSTRACT
SARS-CoV-2 causes COVID-19, an acute respiratory distress syndrome (ARDS) characterized by pulmonary edema, viral pneumonia, multiorgan dysfunction, coagulopathy, and inflammation. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) receptors to infect and damage ciliated epithelial cells in the upper respiratory tract. In alveoli, gas exchange occurs across an epithelial-endothelial barrier that ties respiration to endothelial cell (EC) regulation of edema, coagulation, and inflammation. How SARS-CoV-2 dysregulates vascular functions to cause ARDS in COVID-19 patients remains an enigma focused on dysregulated EC responses. Whether SARS-CoV-2 directly or indirectly affects functions of the endothelium remains to be resolved and is critical to understanding SARS-CoV-2 pathogenesis and therapeutic targets. We demonstrate that primary human ECs lack ACE2 receptors at protein and RNA levels and that SARS-CoV-2 is incapable of directly infecting ECs derived from pulmonary, cardiac, brain, umbilical vein, or kidney tissues. In contrast, pulmonary ECs transduced with recombinant ACE2 receptors are infected by SARS-CoV-2 and result in high viral titers (∼1 × 107/ml), multinucleate syncytia, and EC lysis. SARS-CoV-2 infection of ACE2-expressing ECs elicits procoagulative and inflammatory responses observed in COVID-19 patients. The inability of SARS-CoV-2 to directly infect and lyse ECs without ACE2 expression explains the lack of vascular hemorrhage in COVID-19 patients and indicates that the endothelium is not a primary target of SARS-CoV-2 infection. These findings are consistent with SARS-CoV-2 indirectly activating EC programs that regulate thrombosis and endotheliitis in COVID-19 patients and focus strategies on therapeutically targeting epithelial and inflammatory responses that activate the endothelium or initiate limited ACE2-independent EC infection.IMPORTANCE SARS-CoV-2 infects pulmonary epithelial cells through ACE2 receptors and causes ARDS. COVID-19 causes progressive respiratory failure resulting from diffuse alveolar damage and systemic coagulopathy, thrombosis, and capillary inflammation that tie alveolar responses to EC dysfunction. This has prompted theories that SARS-CoV-2 directly infects ECs through ACE2 receptors, yet SARS-CoV-2 antigen has not been colocalized with ECs and prior studies indicate that ACE2 colocalizes with alveolar epithelial cells and vascular smooth muscle cells, not ECs. Here, we demonstrate that primary human ECs derived from lung, kidney, heart, brain, and umbilical veins require expression of recombinant ACE2 receptors in order to be infected by SARS-CoV-2. However, SARS-CoV-2 lytically infects ACE2-ECs and elicits procoagulative and inflammatory responses observed in COVID-19 patients. These findings suggest a novel mechanism of COVID-19 pathogenesis resulting from indirect EC activation, or infection of a small subset of ECs by an ACE2-independent mechanism, that transforms rationales and targets for therapeutic intervention.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Blood Coagulation Factors / Peptidyl-Dipeptidase A / Endothelial Cells / SARS-CoV-2 / Inflammation Limits: Animals / Humans Language: English Year: 2020 Document Type: Article Affiliation country: MBio.03185-20

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Blood Coagulation Factors / Peptidyl-Dipeptidase A / Endothelial Cells / SARS-CoV-2 / Inflammation Limits: Animals / Humans Language: English Year: 2020 Document Type: Article Affiliation country: MBio.03185-20