Your browser doesn't support javascript.
Identification of FDA approved drugs and nucleoside analogues as potential SARS-CoV-2 A1pp domain inhibitor: An in silico study.
Singh, Atul Kumar; Kushwaha, Prem Prakash; Prajapati, Kumari Sunita; Shuaib, Mohd; Gupta, Sanjay; Kumar, Shashank.
  • Singh AK; Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India.
  • Kushwaha PP; Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India.
  • Prajapati KS; Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India.
  • Shuaib M; Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India.
  • Gupta S; Department of Urology, Case Western Reserve University, Cleveland, OH, 44106, USA.
  • Kumar S; Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India. Electronic address: shashankbiochemau@gmail.com.
Comput Biol Med ; 130: 104185, 2021 03.
Article in English | MEDLINE | ID: covidwho-987393
ABSTRACT
Coronaviruses are known to infect respiratory tract and intestine. These viruses possess highly conserved viral macro domain A1pp having adenosine diphosphate (ADP)-ribose binding and phosphatase activity sites. A1pp inhibits adenosine diphosphate (ADP)-ribosylation in the host and promotes viral infection and pathogenesis. We performed in silico screening of FDA approved drugs and nucleoside analogue library against the recently reported crystal structure of SARS-CoV-2 A1pp domain. Docking scores and interaction profile analyses exhibited strong binding affinity of eleven FDA approved drugs and five nucleoside analogues NA1 (-13.84), nadide (-13.65), citicholine (-13.54), NA2 (-12.42), and NA3 (-12.27). The lead compound NA1 exhibited significant hydrogen bonding and hydrophobic interaction at the natural substrate binding site. The root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface (SASA), hydrogen bond formation, principle component analysis, and free energy landscape calculations for NA1 bound protein displayed stable complex formation in 100 ns molecular dynamics simulation, compared to unbound macro domain and natural substrate adenosine-5-diphosphoribose bound macro domain that served as a positive control. The molecular mechanics Poisson-Boltzmann surface area analysis of NA1 demonstrated binding free energy of -175.978 ± 0.401 kJ/mol in comparison to natural substrate which had binding free energy of -133.403 ± 14.103 kJ/mol. In silico analysis by modelling tool ADMET and prediction of biological activity of these compounds further validated them as putative therapeutic molecules against SARS-CoV-2. Taken together, this study offers NA1 as a lead SARS-CoV-2 A1pp domain inhibitor for future testing and development as therapeutics against human coronavirus.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Antiviral Agents / Molecular Docking Simulation / Coronavirus Papain-Like Proteases / SARS-CoV-2 / COVID-19 Drug Treatment / Nucleosides Type of study: Prognostic study Limits: Humans Country/Region as subject: North America Language: English Journal: Comput Biol Med Year: 2021 Document Type: Article Affiliation country: J.compbiomed.2020.104185

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Antiviral Agents / Molecular Docking Simulation / Coronavirus Papain-Like Proteases / SARS-CoV-2 / COVID-19 Drug Treatment / Nucleosides Type of study: Prognostic study Limits: Humans Country/Region as subject: North America Language: English Journal: Comput Biol Med Year: 2021 Document Type: Article Affiliation country: J.compbiomed.2020.104185