Your browser doesn't support javascript.
Beyond R0: heterogeneity in secondary infections and probabilistic epidemic forecasting.
Hébert-Dufresne, Laurent; Althouse, Benjamin M; Scarpino, Samuel V; Allard, Antoine.
  • Hébert-Dufresne L; Vermont Complex Systems Center, University of Vermont, Burlington, VT 05405, USA.
  • Althouse BM; Department of Computer Science, University of Vermont, Burlington, VT 05405, USA.
  • Scarpino SV; Département de physique, de génie physique et d'optique, Université Laval, Québec, Canada G1V 0A6.
  • Allard A; Institute for Disease Modeling, Bellevue, WA 98005, USA.
J R Soc Interface ; 17(172): 20200393, 2020 11.
Article in English | MEDLINE | ID: covidwho-991016
ABSTRACT
The basic reproductive number, R0, is one of the most common and most commonly misapplied numbers in public health. Often used to compare outbreaks and forecast pandemic risk, this single number belies the complexity that different epidemics can exhibit, even when they have the same R0. Here, we reformulate and extend a classic result from random network theory to forecast the size of an epidemic using estimates of the distribution of secondary infections, leveraging both its average R0 and the underlying heterogeneity. Importantly, epidemics with lower R0 can be larger if they spread more homogeneously (and are therefore more robust to stochastic fluctuations). We illustrate the potential of this approach using different real epidemics with known estimates for R0, heterogeneity and epidemic size in the absence of significant intervention. Further, we discuss the different ways in which this framework can be implemented in the data-scarce reality of emerging pathogens. Lastly, we demonstrate that without data on the heterogeneity in secondary infections for emerging infectious diseases like COVID-19 the uncertainty in outbreak size ranges dramatically. Taken together, our work highlights the critical need for contact tracing during emerging infectious disease outbreaks and the need to look beyond R0.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Pneumonia, Viral / Coronavirus Infections / Communicable Diseases, Emerging / Coinfection / Betacoronavirus / Models, Biological Type of study: Observational study / Prognostic study / Randomized controlled trials Topics: Long Covid Limits: Humans Language: English Journal: J R Soc Interface Year: 2020 Document Type: Article Affiliation country: Rsif.2020.0393

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Pneumonia, Viral / Coronavirus Infections / Communicable Diseases, Emerging / Coinfection / Betacoronavirus / Models, Biological Type of study: Observational study / Prognostic study / Randomized controlled trials Topics: Long Covid Limits: Humans Language: English Journal: J R Soc Interface Year: 2020 Document Type: Article Affiliation country: Rsif.2020.0393