Your browser doesn't support javascript.
Structural and biochemical characterization of nsp12-nsp7-nsp8 core polymerase complex from COVID-19 virus (preprint)
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.23.057265
ABSTRACT
The ongoing global pandemic of coronavirus disease 2019 (COVID-19) has caused huge number of human deaths. Currently, there are no specific drugs or vaccines available for this virus. The viral polymerase is a promising antiviral target. However, the structure of COVID-19 virus polymerase is yet unknown. Here, we describe the near-atomic resolution structure of its core polymerase complex, consisting of nsp12 catalytic subunit and nsp7-nsp8 cofactors. This structure highly resembles the counterpart of SARS-CoV with conserved motifs for all viral RNA-dependent RNA polymerases, and suggests the mechanism for activation by cofactors. Biochemical studies revealed reduced activity of the core polymerase complex and lower thermostability of individual subunits of COVID-19 virus as compared to that of SARS-CoV. These findings provide important insights into RNA synthesis by coronavirus polymerase and indicate a well adaptation of COVID-19 virus towards humans with relatively lower body temperatures than the natural bat hosts.
Subject(s)

Full text: Available Collection: Preprints Database: bioRxiv Main subject: Severe Acute Respiratory Syndrome / COVID-19 Language: English Year: 2020 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: bioRxiv Main subject: Severe Acute Respiratory Syndrome / COVID-19 Language: English Year: 2020 Document Type: Preprint