Your browser doesn't support javascript.
Anti-frameshifting ligand active against SARS coronavirus-2 is resistant to natural mutations of the frameshift-stimulatory pseudoknot (preprint)
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.29.178707
ABSTRACT
The coronavirus SARS-CoV-2 causing the COVID-19 pandemic uses −1 programmed ribosomal frameshifting (−1 PRF) to control the expression levels of key viral proteins. Because modulating −1 PRF can attenuate viral propagation, ligands binding to the viral RNA pseudoknot that stimulates −1 PRF may prove useful as therapeutics. Mutations in the pseudoknot have been observed over the course of the pandemic, but how they affect −1 PRF and the activity of inhibitors is unknown. Cataloguing natural mutations in all parts of the SARS-CoV-2 pseudoknot, we studied a panel of 6 mutations in key structural regions. Most mutations left the −1 PRF efficiency unchanged, even when base-pairing was disrupted, but one led to a remarkable three-fold decrease, suggesting that SARS-CoV-2 propagation may be less sensitive to modulation of −1 PRF efficiency than some other viruses. Examining the effects of one of the few small-molecule ligands known to suppress −1 PRF significantly in SARS-CoV, we found that it did so by similar amounts in all SARS-CoV-2 mutants tested, regardless of the basal −1 PRF efficiency, indicating that the activity of anti-frameshifting ligands can be resistant to natural pseudoknot mutations. These results have important implications for therapeutic strategies targeting SARS-CoV-2 through modulation of −1 PRF.Competing Interest StatementThe authors have declared no competing interest.View Full Text
Subject(s)

Full text: Available Collection: Preprints Database: bioRxiv Main subject: Severe Acute Respiratory Syndrome / COVID-19 Language: English Year: 2020 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: bioRxiv Main subject: Severe Acute Respiratory Syndrome / COVID-19 Language: English Year: 2020 Document Type: Preprint