Your browser doesn't support javascript.
Production of anti-SARS-CoV-2 hyperimmune globulin from convalescent plasma (preprint)
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.18.388991
ABSTRACT
BACKGROUNDIn late 2019, the SARS-CoV-2 virus emerged in China and quickly spread into a world-wide pandemic. Prior to the development of specific drug therapies or a vaccine, more immediately available treatments were sought including convalescent plasma. A potential improvement from convalescent plasma could be the preparation of anti-SARS-CoV-2 hyperimmune globulin (hIVIG). STUDY DESIGN AND METHODSConvalescent plasma was collected from an existing network of plasma donation centers. A caprylate/chromatography purification process was used to manufacture hIVIG. Initial batches of hIVIG were manufactured in a versatile, small-scale facility designed and built to rapidly address emerging infectious diseases. RESULTSProcessing convalescent plasma into hIVIG resulted in a highly purified IgG product with more concentrated neutralizing antibody activity. hIVIG will allow for the administration of greater antibody activity per unit of volume with decreased potential for several adverse events associated with plasma administration. IgG concentration and IgG antibody specific to SARS-CoV-2 were increased over 10-fold from convalescent plasma to the final product. Normalized ELISA activity (per mg/mL IgG) was maintained throughout the process. Protein content in these final product batches was 100% IgG, consisting of 98% monomer and dimer forms. Potentially hazardous proteins (IgM, IgA, and anti-A, anti-B and anti-D antibodies) were reduced to minimal levels. CONCLUSIONSMultiple batches of anti-SARS-CoV-2 hyperimmune globulin (hIVIG) that met regulatory requirements were manufactured from human convalescent plasma. The first clinical study in which the hIVIG will be evaluated will be Inpatient Treatment with Anti-Coronavirus Immunoglobulin (ITAC) [NCT04546581].

Full text: Available Collection: Preprints Database: bioRxiv Language: English Year: 2020 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: bioRxiv Language: English Year: 2020 Document Type: Preprint