Your browser doesn't support javascript.
ABSTRACT
A novel coronavirus, SARS-CoV-2, has caused over 8538 million cases and over 1.8 1 million deaths worldwide since it occurred twelve months ago in Wuhan, China. Here we first analyzed 4,013 full-length SARS-CoV-2 genomes from different continents over a 14-week timespan since the outbreak in Wuhan, China. 2,954 unique nucleotide substitutions were identified with 31 of the 4,013 genomes remaining as ancestral type, and 952 (32.2%) mutations recurred in more than one genome. A viral genotype from the Seafood Market in Wuhan featured with two concurrent mutations was the dominant genotype (80.9%) of the pandemic. We also identified unique genotypic compositions from different geographic locations, and time-series viral genotypic dynamics in the early phase that reveal transmission routes and subsequent expansion. We also used the same approach to analyze 261,350 full-length SARS-CoV-2 genomes from the world over 12 months since the outbreak (i.e. all the available viral genomes in the GISAID database as of 25 December 2020). Our study indicates the viral genotypes can be utilized as molecular barcodes in combination with epidemiologic data to monitor the spreading routes of the pandemic and evaluate the effectiveness of control measures.
Subject(s)

Full text: Available Collection: Preprints Database: bioRxiv Main subject: COVID-19 Language: English Year: 2021 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: bioRxiv Main subject: COVID-19 Language: English Year: 2021 Document Type: Preprint