Your browser doesn't support javascript.
ABSTRACT
Key steps in viral propagation, immune suppression and pathology are mediated by direct, binary physical interactions between viral and host proteins. To understand the biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, we generated an unbiased systematic map of binary physical interactions between viral and host interactions, complementing previous co-complex association maps by conveying more direct mechanistic understanding and enabling targeted disruption of direct interactions. To this end, we deployed two parallel strategies, identifying 205 virus-host and 27 intraviral binary interactions amongst 171 host and 19 viral proteins, with orthogonal validation by an internally benchmarked NanoLuc two-hybrid system to ensure high data quality. Host proteins interacting with SARS-CoV-2 proteins were enriched in various cellular processes, including immune signaling and inflammation, protein ubiquitination, and membrane trafficking. Specific subnetworks provide new hypotheses related to viral modulation of host protein homeostasis and T-cell regulation. The direct virus-host protein interactions we identified can now be prioritized as targets for therapeutic intervention. More generally, we provide a resource of systematic maps describing which SARS-CoV-2 and human proteins interact directly.

Full text: Available Collection: Preprints Database: bioRxiv Language: English Year: 2021 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: bioRxiv Language: English Year: 2021 Document Type: Preprint