Your browser doesn't support javascript.
A spike-ferritin nanoparticle vaccine induces robust innate immune activity and drives polyfunctional SARS-CoV-2-specific T cells (preprint)
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.28.441763
ABSTRACT
Potent cellular responses to viral infections are pivotal for long-lived protection. Evidence is growing that these responses are critical in SARS-CoV-2 immunity. Assessment of a SARS-CoV-2 spike ferritin nanoparticle (SpFN) immunogen paired with two distinct adjuvants, Alhydrogel (AH) or Army Liposome Formulation containing QS-21 (ALFQ) demonstrated unique vaccine evoked immune signatures. SpFN+ALFQ enhanced recruitment of highly activated classical and non-classical antigen presenting cells (APCs) to the vaccine-draining lymph nodes of mice. The multifaceted APC response of SpFN+ALFQ vaccinated mice was associated with an increased frequency of polyfunctional spike-specific T cells with a bias towards TH1 responses and more robust SARS-CoV-2 spike-specific recall response. In addition, SpFN+ALFQ induced Kb spike (539-546)-specific memory CD8+ T cells with effective cytolytic function and distribution to the lungs. This epitope is also present in SARS-CoV, thus suggesting that generation of cross-reactive T cells may provide protection against other coronavirus strains. Our study reveals that a nanoparticle vaccine, combined with a potent adjuvant, generates effective SARS-CoV-2 specific innate and adaptive immune T cell responses that are key components to inducing long-lived immunity.
Subject(s)

Full text: Available Collection: Preprints Database: bioRxiv Main subject: Virus Diseases / Severe Acute Respiratory Syndrome Language: English Year: 2021 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: bioRxiv Main subject: Virus Diseases / Severe Acute Respiratory Syndrome Language: English Year: 2021 Document Type: Preprint