Your browser doesn't support javascript.
B.1.1.7 and B.1.351 SARS-CoV-2 variants display enhanced Spike-mediated fusion (preprint)
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.11.448011
ABSTRACT
SARS-CoV-2 B.1.1.7 (variant Alpha) and B.1.351 (variant Beta) have supplanted pre-existing strains in many countries. Severe COVID-19 is characterized by lung abnormalities, including the presence of syncytial pneumocytes. Syncytia form when infected cells fuse with adjacent cells. The fitness, cytopathic effects and type-I interferon (IFN) sensitivity of the variants remain poorly characterized. Here, we assessed B.1.1.7 and B.1.351 spread and fusion in cell cultures. B.1.1.7 and B.1.351 replicated similarly to D614G reference strain in Vero, Caco-2, Calu-3 and primary airway cells and were similarly sensitive to IFN. The variants formed larger and more numerous syncytia. Variant Spikes, in the absence of any other viral proteins, resulted in faster fusion relative to D614G. B.1.1.7 and B.1.351 fusion was similarly inhibited by interferon induced transmembrane proteins (IFITMs). Individual mutations present in the variant Spikes modified fusogenicity, binding to ACE2 and recognition by monoclonal antibodies. Also, B.1.1.7 and B.1.351 variants remain sensitive to innate immunity components. The mutations present in the two variants globally enhance viral fusogenicity and allow for antibody evasion.
Subject(s)

Full text: Available Collection: Preprints Database: bioRxiv Main subject: COVID-19 / Lung Diseases Language: English Year: 2021 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: bioRxiv Main subject: COVID-19 / Lung Diseases Language: English Year: 2021 Document Type: Preprint