Your browser doesn't support javascript.
Highly efficient SARS-CoV-2 infection of human cardiomyocytes: spike protein-mediated cell fusion and its inhibition (preprint)
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.30.454437
ABSTRACT
Severe cardiovascular complications can occur in coronavirus disease of 2019 (COVID-19) patients. Cardiac damage is attributed mostly to a bystander effect the aberrant host response to acute respiratory infection. However, direct infection of cardiac tissue by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also occurs. We examined here the cardiac tropism of SARS-CoV-2 in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) that beat spontaneously. These cardiomyocytes express the angiotensin I converting-enzyme 2 (ACE2) receptor and a subset of the proteases that mediate spike protein cleavage in the lungs, but not transmembrane protease serine 2 (TMPRSS2). Nevertheless, SARS-CoV-2 infection was productive viral transcripts accounted for about 88% of total mRNA. In the cytoplasm of infected hiPSC-CM, smooth walled exocytic vesicles contained numerous 65-90 nm particles with typical ribonucleocapsid structures, and virus-like particles with knob-like spikes covered the cell surface. To better understand the mechanisms of SARS-CoV-2 spread in hiPSC-CM we engineered an expression vector coding for the spike protein with a monomeric emerald-green fluorescent protein fused to its cytoplasmic tail (S-mEm). Proteolytic processing of S-mEm and the parental spike were equivalent. Live cell imaging tracked spread of S-mEm signal from cell to cell and documented formation of syncytia. A cell-permeable, peptide-based molecule that blocks the catalytic site of furin abolished cell fusion. A spike mutant with the single amino acid change R682S that inactivates the furin cleavage site was fusion inactive. Thus, SARS-CoV-2 can replicate efficiently in hiPSC-CM and furin activation of its spike protein is required for fusion-based cytopathology. This hiPSC-CM platform provides an opportunity for target-based drug discovery in cardiac COVID-19. Author SummaryIt is unclear whether the cardiac complications frequently observed in COVID-19 patients are due exclusively to systemic inflammation and thrombosis. Viral replication has occasionally been confirmed in cardiac tissue, but rigorous analyses are restricted to rare autopsy materials. Moreover, there are few animal models to study cardiovascular complications of coronavirus infections. To overcome these limitations, we developed an in vitro model of SARS-CoV-2 spread in induced pluripotent stem cell-derived cardiomyocytes. In these cells, infection is highly productive viral transcription levels exceed those documented in permissive transformed cell lines. To better understand the mechanisms of SARS-CoV-2 spread we expressed a fluorescent version of its spike protein that allowed to characterize a fusion-based cytopathic effect. A mutant of the spike protein with a single amino acid mutation in the furin cleavage site lost cytopathic function. The spike protein of the Middle East Respiratory Syndrome (MERS) coronavirus drove cardiomyocyte fusion with slow kinetics, whereas the spike proteins of SARS-CoV and the respiratory coronavirus 229E were inactive. These fusion activities correlated with the level of cardiovascular complications observed in infections with the respective viruses. These data indicate that SARS-CoV-2 has the potential to cause cardiac damage by fusing cardiomyocytes.
Subject(s)

Full text: Available Collection: Preprints Database: bioRxiv Main subject: Respiratory Tract Infections / Thrombosis / Carcinoma, Renal Cell / Coronavirus Infections / Severe Acute Respiratory Syndrome / COVID-19 / Heart Diseases / Inflammation Language: English Year: 2021 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: bioRxiv Main subject: Respiratory Tract Infections / Thrombosis / Carcinoma, Renal Cell / Coronavirus Infections / Severe Acute Respiratory Syndrome / COVID-19 / Heart Diseases / Inflammation Language: English Year: 2021 Document Type: Preprint