Your browser doesn't support javascript.
Genomic evidence for divergent co-infections of SARS-CoV-2 lineages (preprint)
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.03.458951
ABSTRACT
Recently, patients co-infected by two SARS-CoV-2 lineages have been sporadically reported. Concerns are raised because previous studies have demonstrated co-infection may contribute to the recombination of RNA viruses and cause severe clinic symptoms. In this study, we have estimated the compositional lineage(s), tendentiousness, and frequency of co-infection events in population from a large-scale genomic analysis for SARS-CoV-2 patients. SARS-CoV-2 lineage(s) infected in each sample have been recognized from the assignment of within-host site variations into lineage-defined feature variations by introducing a hypergeometric distribution method. Of all the 29,993 samples, 53 (~0.18%) co-infection events have been identified. Apart from 52 co-infections with two SARS-CoV-2 lineages, one sample with co-infections of three SARS-CoV-2 lineages was firstly identified. As expected, the co-infection events mainly happened in the regions where have co-existed more than two dominant SARS-CoV-2 lineages. However, co-infection of two sub-lineages in Delta lineage were detected as well. Our results provide a useful reference framework for the high throughput detecting of SARS-CoV-2 co-infection events in the Next Generation Sequencing (NGS) data. Although low in average rate, the co-infection events showed an increasing tendency with the increased diversity of SARS-CoV-2. And considering the large base of SARS-CoV-2 infections globally, co-infected patients would be a nonnegligible population. Thus, more clinical research is urgently needed on these patients.
Subject(s)

Full text: Available Collection: Preprints Database: bioRxiv Main subject: COVID-19 Language: English Year: 2021 Document Type: Preprint

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Preprints Database: bioRxiv Main subject: COVID-19 Language: English Year: 2021 Document Type: Preprint